Chapter 14: The principal-agent problem




m Hidden actions (Moral hazard) (§14.B)
m Hidden information (§14.C)
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314.B Hidden actions

Principal-Agent model The owner of a firm (the
principal) hires a manager (the agent).

The effort level of the manager The effort is not
observable nor verifiable. eg: high effort, e;: low effort.
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314.B Hidden actions

The effort level of the manager The effort is not
observable nor verifiable. eg: high effort, e;: low effort.

The profit of the firm © This is observable and
verifiable. This depends on the density function f(7|e) on
i, | given e.

Ve, Vm € |z, 7|, f(mle) > 0.
Vi € (m,m), F(rleg) < F(rler).
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Hidden actions (Moral hazard)

The owner’s profit 7 — w, where w is the wage.

The manager’s net utility u(w,e) =v(w) — g(e),
where v' > 0, v" <0, g(eg) > g(er).
u: The manager’s reservation utility.
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Hidden actions (Moral hazard)

Effort is observable and verifiable (benchmark)

max /(7’(‘ —w(m))f(rle)dn

ec{er,eq },w(m) (1)
s.t. /v(w(w))f(w\e)dw — g(e) > u.
1st, find optimal w for each e; 2nd, find the optimal e.
The first stage This is equivalent to
min /w(ﬁ)f(ﬂe)dﬂ
w() (2)

s.t. /v(w(w))f(w]e)dw — g(e) > u.
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Hidden actions (Moral hazard)

The first stage min /w(w)f(w]e)dﬁ

w(m)

s.t. /v(w(w))f(w]e)dﬁ — g(e) > u.

F.O.C. w(m) at each level of m € |7, 7| must satisfy

/ =0, or ! =
f(rle) +0 (wlm) frle) =0, or i =7, (3

U

where v is the Lagrange multiplier. Thus, regardless of ,
w(7) is constant (w?). The risk-neutral owner fully
Insures the risk-averse manager.
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Hidden actions (Moral hazard)

F.O.C. w(m) at each level of m € |7, 7| must satisfy

/ =0, or ! —
~f(xle) + 10! () (rle) = 0, or s =, (3

(V)

where v is the Lagrange multiplier. Thus, regardless of ,
w(7) is constant (w?). The risk-neutral owner fully
Insures the risk-averse manager.

The optimal wage Since the constraint is binding,

U/W@H@%Mw—mdzﬂ—+uézV%ﬂ@+ﬂ)
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Hidden actions (Moral hazard)

Full insurance Suppose that there are only two events 74
and TR.

U" = — [f(male)wa + f(mple)ws], (4)

MRS" = — f(wale)/ f(msle). (5)

UY = f(male)v(wa) + f(mple)v(wp), (6)

MRSY = — [f(male)v'(wa)l/[f (z5le)v'(wp)].  (7)
_wp OP
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Hidden actions (Moral hazard)

The second stage Given w' = v~ !(g(e) + u) in stage 1,

max/(ﬂ —v Y (g(e) +u))f(rle)dn

€

— m;ax/wf(ﬂe)dﬂ — v (g(e) + @). (8)
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Hidden actions (Moral hazard)

The second stage Given w' = v~ !(g(e) + u) in stage 1,

max/(ﬂ —v Y (g(e) +u))f(rle)dn

€

— meax‘/wf(ﬂe)dﬂ — v (g(e) + @). (8)

Proposition 14.B.1 In the principal-agent model with
observable (and verifiable) managerial effort, an optimal
contract satisfies that the manager chooses the effort e*
that maximizes (8) and pays the manager a fixed wage

w* = v (g(e*) + ).
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Hidden actions (Moral hazard)

Example 1l 7€/0,2], =0, v(w) =Vw, v (v) =%
gleg) =a € (0,1), gler) =0, For w € [0, 2],
frler) = 1=, Blrler) = | wf(rles) = 3.

T ’ 4
5 E(mley) :/0 mf(mwley) = 3

f(rlen) =
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Hidden actions (Moral hazard)

2], u =0, v(w) = Vw, v (v) = v
gler) =0, For m € [0, 2],

Example 1 7€ |
glem) = a < (0,1

~

[
)

/s : 2
frler) = 1=, Blrler) = | wf(rles) = 3.

T 4

f(mler) = 5’ E(rlen) = /0 mf(mwley) = 5

The wage schedule is

wy = v (gler) + @) =0, wy =v"(g9(en) + 1) = a”.
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Hidden actions (Moral hazard)

Example 1l 7€/0,2], =0, v(w) =Vw, v (v) =%
gleg) =a € (0,1), gler) =0, For w € [0, 2],
frler) = 1=, Blrler) = | wf(rles) = 3.

T ’ 4
5 E(mley) :/0 mf(mwley) = 3

f(rlen) =

The wage schedule is
wy = v (gler) + @) =0, wy =v"(g9(en) + 1) = a”.
The condition that the owner implements ¢y, is

2
E(rler) — wt > E(rlen) — wh < a> \/;
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Hidden actions (Moral hazard)

Optimal contract: When the manager is risk-neutral
(benchmark) When the effort is observable, (8)
becomes as follows:

max /Wf(w\e)dw—[g(e) + u. (9)
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Hidden actions (Moral hazard)

Optimal contract: When the manager is risk-neutral
(benchmark) When the effort is observable, (8)

becomes as follows:

max /Wf(w\e)dﬂ—[g(e) + u. (9)

Proposition 14.B.2 In the principal-agent model with
unobservable managerial effort and risk-neutral manager,
an optimal contract generates the same effort choice and
expected utilities for the manager and the owner as when

effort 1s observable.
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Hidden actions (Moral hazard)

Proof: The owner can never do better when effort is not
observable than it is. Thus, if a contract gives the owner
the same maximal payoff that he receives under full
information, it is optimal.

Suppose that the owner offers w(-) where

w(m) =7 —a", where o = /Wf(ﬁ]e*)dﬁ — [u+ g(e¥)].
The manager’s expected utility is
[ wimsrlerdn ~ g(e) = [ wfrlerin - g(e) - a*

Let e* be the optimal effort in eq. (9). e* also maximizes
this expected utility.
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Hidden actions (Moral hazard)

Proof (cont.) That is, the manager chooses ¢* under the
wage schedule w(-). The manager's expected utility is

/ mf(wleT)dm —g(e”) —a” = 1.

He/She accepts the wage. Offering the wage schedule
w(-), the owner obtains the expected payoff:

/(77 — w(m)) f(x]e*)dn = /oz*f(w\e*)dw — o

This is the maximal profit when effort is observable.
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Hidden actions (Moral hazard)

Effort is unobservable and manager is risk-averse
Stage 1 We find the optimal contract for e.

min/w(ﬂ)f(ﬂe)dﬂ (10)

w(r)

s.t.(1) /v(w(w))f(w]e)dﬂ —g(e) > u,

Individual Rationality (IR)
(22) e solves

max /v(w(w))f(w\é)dﬂ —g(é).

éE{eL,eH}

Incentive Compatibility (IC)
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Hidden actions (Moral hazard)

Case 1: Implementing e;, (i) is

‘/v(?,u(w))f(?T!61;)057T —g(er)
Z‘/U(w(ﬂ'))f(ﬂ"@}[)dﬂ-_g(eﬂ)'

We now consider the following wage offer

w(r) = w = v (a+ g(er)) for all .
This wage satisfies both (i) and (ii). In addition, the
owner obtains the same profit as when effort is observable.

This wage schedule optimally implements e; even when
effort is unobservable.
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Hidden actions (Moral hazard)

Case 2: Implementing ey (i) is

> [ vlw(m) s (ele)dr - gler)
Solving the owner’'s optimization problem, we have
— f(rlen) + y[v'(w(m)) f(7len)]
+ plf(mlen) — f(wler)]v'(w(r)) = 0.

where v and p are the multipliers on constraints (i) and
(i) respectively.

f(mler) = v'(w(m)[Vf(rler) + plf(nlex) — f(rler)]].
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Hidden actions (Moral hazard)

Case 2 (cont.)
f(wlen) =v'(w(m) v f(rlen) + plf (wlen) — f(rler)]],

1 1
(@) Flen) ! (t'eﬂ); e = e
- B f Tler,
=t 1= 7o) (”)

Lemma 14.B.1 In any solution to (10) with e = ey,
~v > 0 and u > 0.

Proof Suppose that v = 0. Since F'(-|eg) FOS dominates
F'(-|er,), there is an open interval IT C [, 7] such that
f(rler)/ f(mlem) > 1 for all w € II.
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Proof (cont.) By~y=0and x>0,V eIl (11) is
1 | f(7T|€L)}

=~v+pu|l— <0,

V(@) L Fen)

that is, v'(w(m)) < 0. Since v > 0, v > 0.
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Proof (cont.) By~y=0and x>0,V eIl (11) is
1 | f(7T|€L)}§07

dwm) T Falen

that is, v'(w(m)) < 0. Since v > 0, v > 0.

Suppose i = 0. Then, 1/v'(w(w)) = 7, that is, w(m) is
constant. The manager chooses e, rather than ey (this
violates (ii)). Hence, u > 0.
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Proof (cont.) By~y=0and x>0,V eIl (11) is
1 | f(7T|€L)}§07

dwm) T Falen

that is, v'(w(m)) < 0. Since v > 0, v > 0.

Suppose i = 0. Then, 1/v'(w(w)) = 7, that is, w(m) is
constant. The manager chooses e, rather than ey (this
violates (ii)). Hence, u > 0.

Fact 14.B.1 Let w such that 1/v'(w) = ~. For all 7
w(mw) >w if flrler) (mles)
f(mlen) (7lem)

w(7) is not necessarily monotonically increasing in 7.

> 1.

<1, w(m)<w if;
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Example 2 7€ [0,2], gleg) =a € (0,2), g(er) =0,
) () —

w=>b>a, v(w) = vw, viv) =0’
For m € [0, 2],
it 1
firter) = { 33 §uS Y Slalen) =3

V(w) = 1/(2vw). L(r) =

Let w(-) be an optimal solution to (10) implementing
e=epy. (11) |

u(1—3/2) ifr <1,
(2u(w(m)) =) 2V/w { u(l—1/2) ifr > 1.

f(rler) { 3/2 ifw <1,
f(rlem) | 1/2 if7>1.




Example 2 (cont.) Since IR is binding,

U/wmmwwwmﬂ—maza,

> a b:/o v(w(m)) f(mlemg)dr = ’
Since IC is binding,
[ wtw@) srlenyin ~ glen)

_ / v(w(m)) f(mlep)dr — gler),

Ay —
%%—a: WS . or 1 = 3a.




Example 2 (cont.) ~=2(a+b) and = 8a.

2y —p)/d=b—a ifw <1,
v(w(ﬂ))_ w(ﬂ):{ (214_5)/4:54_3@ if = > 1.

Elw(m)leg] = (b —a)*/2 + (b4 3a)*/2 = b* + 2ab + 5a”.

The owner's net profit Il is

[y = E(rnley) — Elw(r)|ey] = 1 — (b* + 2ab + 5a*).
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Example 2 (cont.)
The optimal wage implementing ey, is

w; = v (u+ gler)) = (b+0)* = b*.

The expected gross profit is

1 2
3 1 3
E(rler :/ 7T—d7T—|—/ T—dm = —.
(mler) ™ T 0
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Example 3 7€ [0,3], gleg) =a € (0,3), gler) =0,
u=>b, v(w) =vw, v i) =12 v(w) =1/(2yw).

For m € [0, 3],
1/2 if w €|0,1], .
f(rler) = { 1/6 ifme (1,2, f(rleg)= 3
1/3 if m € (2,3],
3/2 if mel0,1],
L(m) = frler) _ { 1/2 if € (1,2],
frlen) |1 irre (2,3,




Example 3 (cont.) Let w(-) be an optimal solution to
(10) implementing e = eg. (11) is
/7_“/2 it ™ e [071]7
(2o(w(m)) =) 2v/w(r) = ¢ v+ p/2 if7e(l,2]
v if me (2,3

Since IR is binding,
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Example 3 (cont.) Since IC is binding,
/ o(w(m) f (xlex)dr — glex)
- / o(w(m) f (nler)dm — gler).

6y —
%z—a: i 'um“ = 12a.
2 12

Substituting v and u into v(w(m)), we have

2y —p)/4=b—2a if 1 €]|0,1],
v(w(m)) = Jw(m) = { (2y+p)/d=b+4a ifme (1,2,
v/2=b+a if T € (2,3].
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Example 3 (cont.) The expected wage payment is
Elw(r)|er] = b* + 2ab + 7a”.

The owner’'s net profit 11y is

Iy = E(rley) — Elw(m)|ey] = 3/2 — (b* + 2ab + 5a?).
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Example 3 (cont.)
The optimal wage implementing ey, is

w; = v (u+ gler)) = (b+0)* = b*.

The expected gross profit is

1 2 3
1 1 1 4
E(rler :/ 7T—d7T—|—/ 7T—d7T—|—/ T—dm = —.
(mlex) 0 2 ;06 5 3 !
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f(?T!eL)}
Eq.(11) : = I — .
00 Sy = | e
Monotone likelihood ratio property (MLRP)
_ flrler) . .
L(m) = F(len) is decreasing in .

Fact 14.B.2 Let w(-) be an optimal solution to (10).
w(-) is increasing < MLRP holds.
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: 1 - _f(W!fiL)
D =TT [1 f<w\eﬂ>] |

Monotone likelihood ratio property (MLRP)
f(rler)

L(m) =
= Frlen)
Fact 14.B.2 Let w(-) be an optimal solution to (10).

w(-) is increasing < MLRP holds.
Taking derivatives of both sides of (11), we have

W) e @)
P D= Sy E

Since > 0 and v" < 0, w'(7w) > 0 if and only if L'(7w) < 0.
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Is decreasing in .

w
w




Jensen’s Inequality Let x be a random variable. Let h:

' — N
h is concave = h(FE(x)) > E(h(x)),
h is strictly concave = h(E(z)) > E(h(z)).

Fact 14.B.3 w(:) is an optimal wage to implement ej.
Elw(rm)|ex] > v (u + gler)) = wiy (observable case).
Proof Since IR is binding (Lemma 1),
Elv(w(m))len] = u + glen).

Since v(-) is strictly concave,

v(Blw(m)len]) > Elv(w(r))le ]=ﬂ g(en),

= Elw(r)len] > v (u+ g(en))

26 / 46



Another signal Let y be another signal of effort which is
available to the owner. The density function is f(m,yl|e).

Implement ey A condition analogous to (11)
1 f(7T7 y‘eL) :|
v'(w(m,y f(m ylen)

When y is independent of e, f(m,yle) = fi(w|e) fo(y).
Substituting f(m,y|e) into (12), we find that (12) is
independent of .

))=v+u{b— (12)
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Intuition Suppose that the owner initially offers a wage
schedule depending on y. If the owner instead offers, for
each 7, the certain payment w(7) such that

v(@(r)) = Elo(w(m, y))lr] = / o(w(r,y)) foly)dy.

The manager's expected utility does not change. The
expected wage payments becomes lower, that is, the
owner is better off.

v(w(r)) = Elo(w(m, y))|r] <v(Elw(m,y)|r]).

Further discussion f(7m,yle) = fi(7le) fa(y|m, e).

If f, does not depend on e, (12) is independent of y.
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314.C Hidden information

Setting  An owner wishes to hire a manager. The random
realization of the manager’s disutility from effort is not
observable. Now assume that effort is observable.

Hidden Information Effort e € [0, 00), Profit: 7(e)
(w(0) =0, #’ >0, 7” < 0). Manager's utility: u(w, e, 0)
(f € R is the manager's unobservable type).

Utility function wu(w,e,0) =v(w — g(e, 8)), where
g(e, 8) measures the disutility of effort in monetary units.
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Hidden information

Utility: u(w,e, 0) =v(w —g(e,0)), (v >0, v" <0).
Disutility g(e,0): ¢(0,0) =0 V0.
> (0 fore >0,
ge(ea‘g) { _ 0 fore—20 gee(e,e) > () Ve,

<0 fore>0,
ge(e,0) <0 Ve, gegle, ) { 0 fore—0.

Higher values of 6 are more productive states.
The indifference curves have the single-crossing property
discussed in Ch.13.

Type: After the contract is signed, g or 6, is randomly
realized (g > 0, Pr(0y) = A € (0,1)).
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A contract The risk-neutral owner should insure the
manager against fluctuations in his income. The contract
must make the level of managerial effort responsive to the
disutility incurred by the manager.

0 is observable The owner offers two wage-effort pairs
(w;, e;) for state ; (¢« = H, L).

wL,eLZIBl,?U};,eHZO )\[W(GH) - wH] + (1 o )\)[W(GL) - wL]y

s.t. \w(wg — gleq,0m))
+ (1 — Nv(wr, — g(er,01)) > a.

The constraint must be binding.

31/ 46



F.O.C. The first-order conditions (7 is the multiplier)
A+ A (wy — g€y, 0m)) =0, (13)

—(1=A) +~(1 = A)v'(wg —gleg,02)) =0,  (14)
>‘7T/<6?{) _ ’VA?)’(UJ;[ _ g<6H7 QH))ge(eHv HH) < 07 (15)
(1= N)m'(er) — v(1 = A)v'(wp, — gler, 0r))ge(er, 0r) <0, (16)
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F.O.C. The first-order conditions (7 is the multiplier)
A+ A (wy — g(€fy,0m)) =0, (13

—(1=A) +~(1 = A)v'(wg —gleg,02)) =0,  (14)
>‘7T/<6?{) _ WA?)’(UJ;[ _ g<6H7 HH))ge(eHv HH) < 07 (15)
(1= N)m'(er) — v(1 = A)v'(wp, — gler, 0r))ge(er, 0r) <0, (16)

The first inequality in (15) is replaced with equality if
e > 0.

The second inequality in (16) is replaced with equality if
e; > 0.
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F.O.C. The first-order conditions (7 is the multiplier)
A+ A (wy — g(€fy,0m)) =0, (13

—(1=A) +~(1 = A)v'(wg —gleg,02)) =0,  (14)
>‘7T/<6?{) _ /7)‘7)/<w3kﬁl _ g<6H7 HH))ge(eHv HH) < 07 (15)
(1= N)m'(er) — v(1 = A)v'(wp, — gler, 0r))ge(er, 0r) <0, (16)

Insuring the agent (13) and (14) lead to
v'(wy — g(ey, 0n)) = v'(wr —gleg, ).  (17)
This implies that w}; — g(el;, 0x) = w; — g(e},0r).
Effort level Since ¢.(0,0) =0 and 7'(0) > 0, e > 0.
The combination of (13) and (15) ((14) and (16)) leads

° m(ef) = g.(ei0:) fori=L.H.  (18)
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Proposition 14.C.1  The optimal contract involves effort
level e in state 6; such that 7'(ef) = g.(el, ;) and fully
Insures the manager.

V(wy — g€y, 0r)) = v'(wg — g(er, ),
7(ef) = go(el,0;) fori =L H,
(A) v(w - gle,8) =@, (B) m(e)—w =TI

The owner's profit
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Only the manager observes 6 If the owner offers
(w7, er) and (wj, e5;), the manager chooses (w7j, e} ) in
both states, 6; and 0.
In stage Oy, the man-
ager will lie to the owner,
claiming that the state is
0r.

What is the optimal con-
tract?

An important result known as the revelation principle

greatly simplifies the analysis of those types of contracting

problems.
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Revelation mechanism

This part is based on Laffont and Martimort (2001) The
Theory of Incentives.
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Revelation mechanism

Definition 14.C.1 Denote the set of possible states
(feasible allocations) by © (by 7). A direct revelation
mechanism is a mapping h(-) from © to o/ which writes
as h(0) = (w(0),e(0)) for all 6 belonging to ©. The
owner commits to offer the transfer w(f) and the effort
level e(f) if the manager announces the value @ for any 6
belonging to ©.

Definition 14.C.2 A direct revelation mechanism A(-) is
truthful if it is incentive compatible for the manager to
announce his/her true type for any type.

v(w(fr) —g(e(dr),0r)) > v(w(@n) — g(e(@n),01)),
v(w(lg) — g(e(0r),0r)) > v(w(dr) — gle(dr),0x))-
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Revelation mechanism

Definition 14.C.3 Let .# be the message space offered
to the manager by a more general mechanism. A
mechanism is a message space .# and a mapping fz( )
from .# to </ which writes as h(m) = (w(m), é(m)) for

all m belonging to .Z .

When facing such a mechanism, the manager with type 6
chooses a best message m*(#) that is implicitly defined as

v(w(m™(8))—g(e(m™(0)),0) = v(w(m)—g(e(m),d)). (19)
for all m in .4 .
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Revelation mechanism

Definition 14.C.3 Let .# be the message space offered
to the manager by a more general mechanism. A

mechanism is a message space .# and a mapping 71( )
from .# to </ which writes as h(m) = (w(m), é(m)) for
all m belonging to .Z .

When facing such a mechanism, the manager with type 6

chooses a best message m*(#) that is implicitly defined as
v(w(m(0)) —g(e(m™(9)),0) = v(w(m)—g(e(m),0)). (19)

for all m in A .

The mechanism (., h(-)) induces an allocation rule

a(f) = (w(m*(0)),e(m*(#))) mapping the set of types ©

into the set of allocations &7
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Revelation mechanism

Proposition 14.C.2  Any allocation rule a(f)) obtained
with a mechanism (.#, h(-)) can also be implemented
with a truthful direct revelation mechanism.
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Revelation mechanism

Proposition 14.C.2  Any allocation rule a(f)) obtained
with a mechanism (.#, h(-)) can also be implemented
with a truthful direct revelation mechanism.

Proof The indirect mechanism (., h(-)) induces an
allocation rule a(6) = (w(m*(0)),e(m*(A))) from © into
o
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Revelation mechanism

Proposition 14.C.2  Any allocation rule a(f)) obtained
with a mechanism (.#, h(-)) can also be implemented
with a truthful direct revelation mechanism.

Proof The indirect mechanism (., h(-)) induces an
allocation rule a(6) = (w(m*(0)),e(m*(A))) from © into
o . By composition of & (-) and m*(-), we can
construct a direct revelation mechanism h(-) mapping ©
into &7, namely h = hom* or forall 0 € ©

h(0) = (w(9), e(6)) = h(m*(0)) = (@(m*(0)), e(m*(9))).
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Revelation mechanism

Proposition 14.C.2  Any allocation rule a(f)) obtained
with a mechanism (.#, h(-)) can also be implemented
with a truthful direct revelation mechanism.

Proof The indirect mechanism (., h(-)) induces an
allocation rule a(6) = (w(m*(0)),e(m*(A))) from © into
o . By composition of & (-) and m*(-), we can
construct a direct revelation mechanism h(-) mapping ©
into &7, namely h = hom* or forall 0 € ©

h(O) = (w(9), e(6)) = h(m*(0)) = (@(m*(0)), e(m*(9))).
(
O
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Revelation mechanism

Proof (cont.) We now check that the direct revelation
mechanism h(-) is truthful. Since inequality (19),

v(w(m™(0)) — g(e(m™(0)),0) = v(w(m) — g(e(mn),0)),

is true for all m, it holds in particular for m = m*(6") for

all ' € ©.
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Revelation mechanism

Proof (cont.) We now check that the direct revelation
mechanism h(-) is truthful. Since inequality (19),

v(w(m™(0)) — g(e(m™(0)),0) = v(w(m) — g(e(mn),0)),

is true for all m, it holds in particular for m = m*(6") for
all 9" € ©. Thus, for all (4,6") in ©

v(w(m*(0))—g(e(m*(0)),0) = v(w(m*(6"))—g(e(m*(¢")), 0))
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Revelation mechanism

Proof (cont.) We now check that the direct revelation
mechanism h(-) is truthful. Since inequality (19),

v(w(m™(0)) — g(e(m™(0)),0) = v(w(m) — g(e(mn),0)),

is true for all m, it holds in particular for m = m*(6") for
all 9" € ©. Thus, for all (4,6") in ©

v(w(m*(0))—g(é(m™(0)),0) = v(w(m"(6"))—g(e(m*(6")),0))
Finally, using the definition of A(:), we have
v(w(0) — g(e(0),0)) > v(w(@) — g(e(?),0)),

for all (6,6") in ©. The direct revelation mechanism A(-)
Is truthful. Q.E.D.
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A special case (infinite risk

aversion)

Assumption (infinite risk aversion) The manager’s
expected utility is equal to his/her lowest utility level
across the two states.

In each state, an infinitely risk-averse manager has a
utility level equal to .

Owner By the revelation principle, the problem is
max AMrm(eg) —wg|+ (1 — X)|w(er) —wg], (20)

wr,er,>0,wy,eg >0

s.t. (i) wr — g(er,0r) > v ' (a),

(i1) wy — g(em, On) > v (1),
(ZZZ) Wy — g(eH, HH) Z wyr, — g(eL, HH),
(7v) wp —g(er,0r) > wy — glen, 1)
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Lemma 14.C.1  We can ignore constraint (ii).

Proof By (iii), wyg — g(em,05) > wr, — g(er,0p). By the
assumption of g(e,#) and (i),

wr — g(er, 0g) > wr — g(er,0) > v ' ().

That is, whenever (i) and (iii) are satisfied, (ii) is also
satisfied.
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Lemma 14.C.2  An optimal contract in problem (20)
must have w;, — g(er,0r) = v (u).

max Mm(en) —wg] + (1 — MN)[m(er) — wyg],

wr,er,>0,wr,eg >0
sit. (i) wy, — g(er,0r) > v (),
(it) wy — glem, Om) > v (1),
(22¢) wyg — g(eq,0y) > wr — gler,0m),
(7v) wr — g(er,0r) > wy — glen, 0L).
Proof Suppose that there is an optimal solution
[(wL, GL), (wH, GH)] In which wy — g(GL, (91;) > U_l(l_é).
A new wages w; = wy — € and Wy = wy — €, where
e > 0 is small enough, satisfies (i).
The new wage does not affect the incentive constraints.
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Lemma 14.C.3 In any optimal contract: e, < e} and
e = €77, Where e would be the effort level of type 0; if 0
were observable (i = H, L).

Proof By lLemma 14.C.2, (wy,ey) lies on the dot-line.
e e

.
.

(wr,ér)

42 / 46



Lemma 14.C.3 In any optimal contract: e, < e} and
e = €77, Where e would be the effort level of type 0; if 0
were observable (i = H, L).

Proof By lLemma 14. C 2, (wg,er) lies on the dot-line.
\W , \W

By the incentive constraints, (wy, ey) must lie in X.
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Lemma 14.C.3 ¢ <e¢} and eg = e},

Proof By lLemma 14. C 2, (wg,er) lies on the dot-line.
\W , \W

Suppose that é; > e} . The isoprofit curve which goes
through (wp, ér) lies above the one which goes through
(w7, e} ). The owner can raise the profit in stage 61 by
choosing (wj, e} ) that does not narrow X.
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Lemma 14.C.3 ¢ <e¢} and eg = e},

Proof By lLemma 14. C 2, (wg,er) lies on the dot-line.
\W , \W

Suppose that é; > e} . The isoprofit curve which goes
through (wp, ér) lies above the one which goes through
(w7, e} ). The owner can raise the profit in stage 61 by
choosing (w7, e} ) that does not narrow X. A contract
with é; > e} cannot be optimal.
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Proof (cont.) Given (wg,ér) with é; < e} (see Figure),
the owner’s problem is to find (wg, ep) in region X.

The solution occurs at a point of tangency between the
manager's state 0y indifference curve through point
(wp, éx) and an isoprofit curve for the owner. This

tangency occurs at e = ej; (this is characterized by (18)
in the observable case).
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Lemma 14.C.4
Proof (sketch)

In any optimal contract, e;, < e7.

We now set e;, = e} (see Figure).

€

R
(i e1)
v (a) |
o '*'*
—7T}LI' €L €H

The expected profit is Awryg + (1 — AN)7y.
Suppose that the owner slightly lowers ey, from e} to éy.

44 / 46



Proof (cont.) Under é;, 7 decreases but 7y increases.

\W \W

(W, er)

>€

S e
Am ¥ épe; ey A 1/ ere; €y
H

When the difference between e} and €y, is small enough,
Ay is nearly equal to zero because the envelop theorem

can be applied to this problem (e} is the first-best result
to maximize the owner’s profit).
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The optimal level of ¢; The greater the likelihood of
state Ay, the more the owner is willing to distort the state

01 outcome. The optimal level of e; satisfies:
A

m'(er) — geler,0r)] geler, 0m) — ge(er,0r)] = 0.

1 —A
When e = €7, the first term is zero and the second term is
strictly negative.

Proposition 14.C.3 ey = e} and e;, < e}. The manager
receives a utility greater than w in state 0. The owner's
profit is lower than when 6 is observable. The infinitely
risk-averse manager's expected utility is the same as when
6 is observable.
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