
Chapter 4: Rationality and
Common Knowledge
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4.1 Dominance in Pure Strategies
4.1.1 Dominated Strategies

Payoff function vi(s): The payoff of player i from a
profile of strategies s = (s1, . . . , si−1, si, si+1, . . . , sn).



Section 4.1

2 / 10

Payoff function vi(s): The payoff of player i from a
profile of strategies s = (s1, . . . , si−1, si, si+1, . . . , sn).

The strategies (actions) chosen by the players who are not
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(s1, . . . , si−1, si+1, . . . , sn) ∈ S1×· · ·×Si−1×Si+1×· · ·×Sn.
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Payoff function vi(s): The payoff of player i from a
profile of strategies s = (s1, . . . , si−1, si, si+1, . . . , sn).

The strategies (actions) chosen by the players who are not
player i are denoted by the profile

(s1, . . . , si−1, si+1, . . . , sn) ∈ S1×· · ·×Si−1×Si+1×· · ·×Sn.

To simplify the exposition, we define

S−i ≡ S1 × · · · × Si−1 × Si+1 × · · · × Sn,

the set of all the strategy sets of all players who are not
player i.
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Payoff function vi(si, s−i): The payoff of player i from
a profile of strategies s = (si, s−i).
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Prisoner’s dilemma Each of the two players has an
action that is best regardless of what its opponent
chooses.

Player 2
F M

F (−4,−4) (−1,−5)
Player 1

M (−5,−1) (−2,−2)
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regardless of what its opponent does.
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F M
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Prisoner’s dilemma Playing M is worse than playing F
regardless of what its opponent does.

Player 2
F M

F (−4,−4) (−1,−5)
Player 1

M (−5,−1) (−2,−2)

Playing M is dominated.
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Definition 4.1 Let si ∈ Si and s′i ∈ Si be possible
strategies for player i. s′i is strictly dominated by si if
for any possible combination of the other players’
strategies, s−i ∈ S−i, player i’s payoff from s′i is strictly
less than that from si. That is,

vi(si, s−i) > vi(s
′
i, s−i) for all s−i ∈ S−i.

We will write si �i s
′
i to denote that s′i is strictly

dominated by si.
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Definition 4.1 Let si ∈ Si and s′i ∈ Si be possible
strategies for player i. s′i is strictly dominated by si if
for any possible combination of the other players’
strategies, s−i ∈ S−i, player i’s payoff from s′i is strictly
less than that from si. That is,

vi(si, s−i) > vi(s
′
i, s−i) for all s−i ∈ S−i.

Claim 4.1 A rational player will never play a strictly
dominated strategy.
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Definition 4.1 Let si ∈ Si and s′i ∈ Si be possible
strategies for player i. s′i is strictly dominated by si if
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1/2 L M H
L 6,6 2,8 0,4
M 8,2 4,4 1,3
H 4,0 3,1 2,2
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4.1.2 Dominant Strategy Equilibrium

Definition 4.2 si ∈ Si is a strictly dominant strategy for
i if every other strategy of i is strictly dominated by it,
that is,

vi(si, s−i) > vi(s
′
i, s−i) for all s′i ∈ Si, s

′
i �= si,

and all s−i ∈ S−i.
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Definition 4.2 si ∈ Si is a strictly dominant strategy for
i if every other strategy of i is strictly dominated by it,
that is,

vi(si, s−i) > vi(s
′
i, s−i) for all s′i ∈ Si, s

′
i �= si,

and all s−i ∈ S−i.

Definition 4.3 The strategy profile sD ∈ S is a strictly
dominant strategy equilibrium if sDi ∈ Si is a strictly
dominant strategy for all i ∈ N .
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Definition 4.3 The strategy profile sD ∈ S is a strictly
dominant strategy equilibrium if sDi ∈ Si is a strictly
dominant strategy for all i ∈ N .
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F M

F (−4,−4) (−1,−5)
Player 1

M (−5,−1) (−2,−2)

(F, F ) is a dominant strategy equilibrium.
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Definition 4.3 The strategy profile sD ∈ S is a strictly
dominant strategy equilibrium if sDi ∈ Si is a strictly
dominant strategy for all i ∈ N .

Player 2
F M

F (−4,−4) (−1,−5)
Player 1

M (−5,−1) (−2,−2)

(F, F ) is a dominant strategy equilibrium.

The payoffs are (−4,−4) for players 1 and 2.
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Definition 4.3 The strategy profile sD ∈ S is a strictly
dominant strategy equilibrium if sDi ∈ Si is a strictly
dominant strategy for all i ∈ N .

Player 2
F M

F (−4,−4) (−1,−5)
Player 1

M (−5,−1) (−2,−2)

(F, F ) is a dominant strategy equilibrium.

Caveat The pair of payoffs is NOT the solution.
The solution should always be described as the strategies
that the players will choose (p.61).
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Definition 4.3 The strategy profile sD ∈ S is a strictly
dominant strategy equilibrium if sDi ∈ Si is a strictly
dominant strategy for all i ∈ N .

Proposition 4.1 If the game Γ = 〈N, {Si}ni=1, {vi}ni=1〉
has a strictly dominant strategy equilibrium sD, then sD is
the unique dominant strategy equilibrium.
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Because the game has a strictly dominant strategy
equilibrium sD ∈ S, each player has a strictly dominant
strategy.
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Definition 4.3 The strategy profile sD ∈ S is a strictly
dominant strategy equilibrium if sDi ∈ Si is a strictly
dominant strategy for all i ∈ N .

Proposition 4.1 If the game Γ = 〈N, {Si}ni=1, {vi}ni=1〉
has a strictly dominant strategy equilibrium sD, then sD is
the unique dominant strategy equilibrium.

Because the game has a strictly dominant strategy
equilibrium sD ∈ S, each player has a strictly dominant
strategy. By definition, each player never has more than
one strictly dominant strategy, that is, the strictly
dominant strategy of player i, sDi , is unique.
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Definition 4.3 The strategy profile sD ∈ S is a strictly
dominant strategy equilibrium if sDi ∈ Si is a strictly
dominant strategy for all i ∈ N .

Pick up a strictly dominant strategy of player i, sDi . By
definition of sDi , for any s′i �= sDi (s′i ∈ Si),

vi(s
D
i , s−i) > vi(s

′
i, s−i) for all s−i ∈ S−i.

This also means that for any s′i ∈ Si/{sDi }, sDi is not
strictly dominated by s′i, implying that s′i is never a
dominant strategy of i. Thus, player i’s strictly dominant
strategy is unique if it exists.
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Definition 4.3 The strategy profile sD ∈ S is a strictly
dominant strategy equilibrium if sDi ∈ Si is a strictly
dominant strategy for all i ∈ N .

Because the game has a strictly dominant strategy
equilibrium sD ∈ S, each player has a strictly dominant
strategy. By definition, each player never has more than
one strictly dominant strategy, that is, the strictly
dominant strategy of player i, sDi , is unique. Therefore,
the profile of the strictly dominant strategy equilibrium
sD = (sD1 , . . . , s

D
n ) is uniquely determined.
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4.1.3 Evaluating Dominant Strategy Equilibrium

Narrow applicability Example: The Battle of the Sexes

Chris
O F

O (2, 1) (0, 0)
Alex

F (0, 0) (1, 2)
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Narrow applicability Example: The Battle of the Sexes

Chris
O F

O (2, 1) (0, 0)
Alex

F (0, 0) (1, 2)

There is no strictly dominant strategy for each player.

If we stick to the solution concept of strict dominance, we
do not have any prediction for the game.
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High predictability sDi is a strictly dominant strategy
equilibrium iff

vi(s
D
i , s−i) > vi(s

′
i, s−i) for all s′i ∈ Si and all s−i ∈ S−i.

The relation holds even though we add/subtract a
sufficiently small value ε > 0 to/from the payoffs.
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Pareto criterion The equilibrium payoff is not always
Pareto optimal:

Player 2
F M

F (−4,−4) (−1,−5)
Player 1

M (−5,−1) (−2,−2)
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Pareto criterion The equilibrium payoff is not always
Pareto optimal:

Player 2
F M

F (−4,−4) (−1,−5)
Player 1

M (−5,−1) (−2,−2)

The failure of Pareto optimality is NOT a failure of the
solution concept.
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Weak dominance s′i ∈ Si is weakly dominated by si if,
for any possible combination of the other players’
strategies, player i’s payoff from s′i is weakly less than that
from si. That is

vi(si, s−i) ≥ vi(s
′
i, s−i) for all s−i ∈ S−i and s′i �= si.
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Weakly dominant si is a weakly dominant strategy for i
if every other strategy of i is weakly dominated by it, that
is,

vi(si, s−i) ≥ vi(s
′
i, s−i) for all s′−i ∈ S−i, s

′
i �= si,

and all s−i ∈ S−i.
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Weakly dominant si is a weakly dominant strategy for i
if every other strategy of i is weakly dominated by it, that
is,

vi(si, s−i) ≥ vi(s
′
i, s−i) for all s′−i ∈ S−i, s

′
i �= si,

and all s−i ∈ S−i.

If a weakly dominant strategy equilibrium exists, it need
not be unique.
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Weakly dominant si is a weakly dominant strategy for i
if every other strategy of i is weakly dominated by it, that
is,

vi(si, s−i) ≥ vi(s
′
i, s−i) for all s′−i ∈ S−i, s

′
i �= si,

and all s−i ∈ S−i.

Suppose that there are more than one weakly dominant
strategies of player i (denote set of the strategies by SD

i ).
Pick up two elements from SD

i , s
D1
i and sD2

i . Those
elements can simultaneously satisfy the above condition if
vi(s

D1
i , s−i) = vi(s

D2
i , s−i).
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4.2 Iterated Elimination of Strictly Dominated Pure
Strategies
4.2.1 Iterated Elimination and Common Knowledge of
Rationality

Dominated strategy A rational player never play a
dominated strategy.
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know that each player will never play a strictly dominated
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Common knowledge of rationality If all the players
know that each player will never play a strictly dominated
strategy, they can effectively ignore those strictly
dominated strategies that their opponents will never play,
and their opponents can do the same thing.
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Common knowledge of rationality If all the players
know that each player will never play a strictly dominated
strategy, they can effectively ignore those strictly
dominated strategies that their opponents will never play,
and their opponents can do the same thing.

Iterated Elimination The players effectively eliminate
their strictly dominated strategies.
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Iterated Elimination The players effectively eliminate
their strictly dominated strategies.

Example Table 1.1.1 in Gibbons (1992, p.6)

1/2 L M R
U 1, 0 1, 2 0, 1
D 0, 3 0, 1 2, 0

1. M strictly dominates R.
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D 0, 3 0, 1 2, 0

1. M strictly dominates R.
2. After R is eliminated, U strictly dominates D.
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1/2 L M R
U 1, 0 1, 2 0, 1
D 0, 3 0, 1 2, 0
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Iterated Elimination The players effectively eliminate
their strictly dominated strategies.

Example Table 1.1.1 in Gibbons (1992, p.6)

1/2 L M R
U 1, 0 1, 2 0, 1
D 0, 3 0, 1 2, 0

1. M strictly dominates R.
2. After R is eliminated, U strictly dominates D.
3. After D is eliminated, M strictly dominates L.

Finally, only (U,M) remains. (U,M) will be played.
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Iterated elimination of strictly dominated strategies
This process builds on the assumption of common
knowledge of rationality.
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The process of IESDS Let Sk
i denote the strategy set

of player i that survives k rounds of IESDS.
We begin the process by defining S0

i = Si for each i.
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i denote the strategy set

of player i that survives k rounds of IESDS.
We begin the process by defining S0

i = Si for each i.

1. Define S0
i = Si for each i, and set k = 0.

2. Are there players for whom there are si ∈ Sk
i that are

strictly dominated? If yes, go to Step 3. If not, go to
Step 4.
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The process of IESDS Let Sk
i denote the strategy set

of player i that survives k rounds of IESDS.
We begin the process by defining S0

i = Si for each i.

1. Define S0
i = Si for each i, and set k = 0.

2. Are there players for whom there are si ∈ Sk
i that are

strictly dominated? If yes, go to Step 3. If not, go to
Step 4.

3. For all the players i ∈ N , remove any strategies
si ∈ Sk

i that are strictly dominated. Set k = k + 1,
and define a new game with strategy sets Sk

i that do
not include the strictly dominated strategies that have
been removed. Go back to Step 2.
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The process of IESDS Let Sk
i denote the strategy set

of player i that survives k rounds of IESDS.
We begin the process by defining S0

i = Si for each i.

1. Define S0
i = Si for each i, and set k = 0.

2. Are there players for whom there are si ∈ Sk
i that are

strictly dominated? If yes, go to Step 3. If not, go to
Step 4.

3. For all the players i ∈ N , remove any strategies
si ∈ Sk

i that are strictly dominated. Go back to Step
2.

4. The remaining strategies in Sk are reasonable
predictions for behavior.
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4.2.2 Example: Cournot Duopoly

Cournot duopoly Firms 1 and 2 produce homogenous
goods. The cost function of firm i is ci(qi) = cqi
(i ∈ {1, 2}), where c(∈ (0, a)) is a positive constant and
qi is its quantity. Each firm simultaneously sets its
quantity. The price in the market, p, is given by

p =

{
a− (q1 + q2) if q1 + q2 < a,
0 if q1 + q2 ≥ a.

The objective of firm i is to maximize its own profit:

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.
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Cournot duopoly The profit of firm i is

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.

The partial derivative of firm i’s profit function with
respect to qi is

∂πi(q1, q2)

∂qi
=

{
a− 2qi − qj − c if q1 + q2 < a,
−c if q1 + q2 ≥ a.

For qj, the optimal quantity of firm i is

qi(qj) =

{
(a− c− qj)/2 if qj < a− c,
0 if qj ≥ a− c.
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Cournot duopoly The profit of firm i is

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.

For qj, the optimal quantity of firm i is

qi(qj) =

⎧⎨
⎩

a− c− qj
2

if qj < a− c,

0 if qj ≥ a− c.

Because qj ≥ 0, qi(qj) ≤ (a− c)/2 for any qj.
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Cournot duopoly The profit of firm i is

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.

For qj, the optimal quantity of firm i is

qi(qj) =

⎧⎨
⎩

a− c− qj
2

if qj < a− c,

0 if qj ≥ a− c.

Because qj ≥ 0, qi(qj) ≤ (a− c)/2 for any qj. That is,
producing qi(> (a− c)/2) is excessive for any qj ≥ 0,
which implies that qi(> (a− c)/2) is strictly dominated by
q1 = (a− c)/2.
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Cournot duopoly The profit of firm i is

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.

For qj, the optimal quantity of firm i is

qi(qj) =

⎧⎨
⎩

a− c− qj
2

if qj < a− c,

0 if qj ≥ a− c.

qi(> (a− c)/2) is strictly dominated by q1 = (a− c)/2.
The strategy set of firm i changes to Si = [0, (a− c)/2]
by IESDS.



Section 4.2

7 / 10

Cournot duopoly The profit of firm i is

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.

For qj, the optimal quantity of firm i is

qi(qj) =

⎧⎨
⎩

a− c− qj
2

if qj < a− c,

0 if qj ≥ a− c.

Under the strategy set Si = [0, (a− c)/2],
(a− c)/4 ≤ qi(qj) ≤ (a− c)/2. Producing
qi(< (a− c)/4) is insufficient for any qj ∈ [0, (a− c)/2].
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Cournot duopoly The profit of firm i is

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.

For qj, the optimal quantity of firm i is

qi(qj) =

⎧⎨
⎩

a− c− qj
2

if qj < a− c,

0 if qj ≥ a− c.

Under the strategy set Si = [0, (a− c)/2], producing
qi(< (a− c)/4) is strictly dominated by qi = (a− c)/4.
The strategy set of firm i changes to
Si = [(a− c)/4, (a− c)/2] by IESDS.
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Cournot duopoly The profit of firm i is

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.

For qj, the optimal quantity of firm i is

qi(qj) =

⎧⎨
⎩

a− c− qj
2

if qj < a− c,

0 if qj ≥ a− c.

The strategy set of firm i changes to
Si = [(a− c)/4, (a− c)/2] by IESDS.
Applying IESDS repeatedly, we find the the strategy set of
firm i converges to Si = 30.
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4.2.3 Evaluating IESDS

Existence of an IESDS solution An IESDS solution
always exists although the predictability of what will
happen depends on games.
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Existence of an IESDS solution An IESDS solution
always exists although the predictability of what will
happen depends on games. IESDS implied the survival of
a unique strategy in the Cournot duopoly discussed above.
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Existence of an IESDS solution An IESDS solution
always exists although the predictability of what will
happen depends on games.
The Battle of the Sexes

Chris
O F

O (2, 1) (0, 0)
Alex

F (0, 0) (1, 2)



Section 4.2

8 / 10

Existence of an IESDS solution An IESDS solution
always exists although the predictability of what will
happen depends on games.
The Battle of the Sexes

Chris
O F

O (2, 1) (0, 0)
Alex

F (0, 0) (1, 2)

IESDS does not eliminate any strategy, leading to the
conclusion “anything can happen.”
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IESDS and strict dominance If for a game
Γ = 〈N, {Si}ni=1, {vi}ni=1〉 s∗ is a strict dominant strategy
equilibrium, then s∗ uniquely survives IESDS.
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IESDS and strict dominance If for a game
Γ = 〈N, {Si}ni=1, {vi}ni=1〉 s∗ is a strict dominant strategy
equilibrium, then s∗ uniquely survives IESDS.
If s∗ = (s∗1, . . . , s

∗
n) is a strict dominant strategy

equilibrium then, by definition, for every player i all other
strategies s′i are strictly dominated by s∗i .
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IESDS and strict dominance If for a game
Γ = 〈N, {Si}ni=1, {vi}ni=1〉 s∗ is a strict dominant strategy
equilibrium, then s∗ uniquely survives IESDS.
If s∗ = (s∗1, . . . , s

∗
n) is a strict dominant strategy

equilibrium then, by definition, for every player i all other
strategies s′i are strictly dominated by s∗i . This implies
that after one stage of elimination we will be left with a
single profile of strategies, which is exactly s∗.
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4.3 Beliefs, Best Responses, and Rationalizability

4.3.1 The Best Response

The best response The Battle of the Sexes

Chris
O F

O (2, 1) (0, 0)
Alex

F (0, 0) (1, 2)
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The best response The Battle of the Sexes

Chris
O F

O (2, 1) (0, 0)
Alex

F (0, 0) (1, 2)

The best choice of Alex depends on what Chris will do.

Alex would rather go to the opera (the football) if Chris
goes to the opera (the football).
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The best response The Battle of the Sexes

Chris
O F

O (2, 1) (0, 0)
Alex

F (0, 0) (1, 2)

Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.
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The best response The Battle of the Sexes

Chris
O F

O (2, 1) (0, 0)
Alex

F (0, 0) (1, 2)

Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.

Claim 4.2 A rational player who believes that his
opponents are playing some s−i ∈ S−i will always choose
a best response to s−i.
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The best response The Battle of the Sexes

Chris
O F

O (2, 1) (0, 0)
Alex

F (0, 0) (1, 2)

Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.

In the Battle of the Sexes, sA = O is the best response of
Alex to sC = O. sA = F is the best response of Alex to
sC = F .
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Proposition 4.3 If si is a strictly dominated strategy for
player i, then it cannot be a best response to any
s−i ∈ S−i.
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Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.

Proposition 4.3 If si is a strictly dominated strategy for
player i, then it cannot be a best response to any
s−i ∈ S−i.
If si is strictly dominated, there exists some s′i �i si such
that vi(s

′
i, s−i) > vi(si, s−i) for all s−i ∈ S−i. This implies

that there is no s−i ∈ S−i for which
vi(si, s−i) ≥ vi(s

′
i, s−i), and thus that si cannot be a best

response to any s−i ∈ S−i.
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Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.

Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .



Section 4.3

9 / 10

Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.

Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .

If s∗ is a strictly dominant strategy equilibrium, it uniquely
survives IESDS (Proposition 4.2). So, it is sufficient to
prove the proposition for strategies that uniquely survive
IESDS.
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Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if
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′
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Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .

Suppose that s∗ uniquely survives IESDS, and choose
some i ∈ N .
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Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.

Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .

Suppose that s∗ uniquely survives IESDS, and choose
some i ∈ N . Suppose in negation to the proposition that
s∗ is NOT a best response to s∗−i.
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Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.

Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .

Suppose that s∗ uniquely survives IESDS, and choose
some i ∈ N . Suppose in negation to the proposition that
s∗ is NOT a best response to s∗−i. In other words, we
prove the proposition by contradiction.
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Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.

Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .

Suppose that s∗ uniquely survives IESDS, and choose
some i ∈ N . Suppose in negation to the proposition that
s∗ is NOT a best response to s∗−i. This supposition
implies that there exists an s′i ∈ Si\{s∗i} such that
vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i).
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Definition 4.5 The strategy si ∈ Si is player i’s best
response to his opponents’ strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i, s−i) ∀ s′i ∈ Si.

Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .

Suppose that s∗ uniquely survives IESDS, and also that
there exists an s′i ∈ Si\{s∗i} such that
vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i).
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Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .

Suppose that s∗ uniquely survives IESDS, and also that
there exists an s′i ∈ Si\{s∗i} such that
vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i). Let S ′

i ⊂ Si be the set of all
such s′i for which vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i). (∗) Because s′i

was eliminated while s∗−i was not, there must be some s′′i
such that vi(s

′′
i , s

∗
−i) > vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i), implying

that s′′i ∈ S ′
i.
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Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .

Suppose that s∗ uniquely survives IESDS, and also that
there exists an s′i ∈ Si\{s∗i} such that
vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i). Let S ′

i ⊂ Si be the set of all
such s′i for which vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i). (∗) Because s′i

was eliminated while s∗−i was not, there must be some s′′i
such that vi(s

′′
i , s

∗
−i) > vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i), implying

that s′′i ∈ S ′
i. Because the game is finite, an induction

argument on S ′
i implies that there exists a strategy

s′′′i ∈ S ′
i that must survive IESDS (we cannot repeat a

kind of the procedure (∗) infinitely).
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Proposition 4.4 If in a finite normal-form game s∗ is a
strictly dominant strategy equilibrium, or if it uniquely
survives IESDS, then s∗ is a best response to s∗−i ∀i ∈ N .

Suppose that s∗ uniquely survives IESDS, and also that
there exists an s′i ∈ Si\{s∗i} such that
vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i). Let S ′

i ⊂ Si be the set of all
such s′i for which vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i). (∗) Because s′i

was eliminated while s∗−i was not, there must be some s′′i
such that vi(s

′′
i , s

∗
−i) > vi(s

′
i, s

∗
−i) > vi(s

∗
i , s

∗
−i), implying

that s′′i ∈ S ′
i. There exists a strategy s′′′i ∈ S ′

i that must
survive IESDS. This contradicts to the fact that s∗i
uniquely survives IESDS.
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4.3.2 Beliefs and Best-Response Correspondences

Definition 4.6 A belief of player i is a possible profile of
his opponents’ strategies, s−i ∈ S−i.
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Definition 4.6 A belief of player i is a possible profile of
his opponents’ strategies, s−i ∈ S−i.

(ex.) Cournot duopoly: The profit of firm i is

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.
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Definition 4.6 A belief of player i is a possible profile of
his opponents’ strategies, s−i ∈ S−i.

(ex.) Cournot duopoly: The profit of firm i is

πi(q1, q2) =

{
(a− (q1 + q2)− c)qi if q1 + q2 < a,
−cqi if q1 + q2 ≥ a.

For any qj, the optimal quantity of firm i is

qi(qj) =

{
(a− c− qj)/2 if qj < a− c,
0 if qj ≥ a− c.

This is the best-response function of firm i.
The list of best responses maps beliefs into a choice of
action.
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Definition 4.6 A belief of player i is a possible profile of
his opponents’ strategies, s−i ∈ S−i.

1/2 L C R
U 3, 3 5, 1 6, 2
M 4, 1 8, 4 3, 6
D 4, 0 9, 6 6, 8
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Definition 4.6 A belief of player i is a possible profile of
his opponents’ strategies, s−i ∈ S−i.

1/2 L C R
U 3, 3 5, 1 6, 2
M 4, 1 8, 4 3, 6
D 4, 0 9, 6 6, 8

Player 1 has more than one best-response strategy.
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Best-response correspondence Player 1 has more than
one best-response strategy.

1/2 L C R
U 3, 3 5, 1 6, 2
M 4, 1 8, 4 3, 6
D 4, 0 9, 6 6, 8

Definition 4.7 The best-response correspondence of
player i selects for each s−i ∈ S−i a subset BRi(s−i) ⊂ Si

where each strategy si ∈ BRi(s−i) is a best response to
s−i.
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Definition 4.7 The best-response correspondence of
player i selects for each s−i ∈ S−i a subset BRi(s−i) ⊂ Si

where each strategy si ∈ BRi(s−i) is a best response to
s−i.
(ex.) ‘Strange’ Cournot duopoly (c = 0): The profit of
firm i is

πi(q1, q2) =

{
(a− (q1 + q2))qi if q1 + q2 < a,
0 if q1 + q2 ≥ a.
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Definition 4.7 The best-response correspondence of
player i selects for each s−i ∈ S−i a subset BRi(s−i) ⊂ Si

where each strategy si ∈ BRi(s−i) is a best response to
s−i.
(ex.) ‘Strange’ Cournot duopoly (c = 0): The profit of
firm i is

πi(q1, q2) =

{
(a− (q1 + q2))qi if q1 + q2 < a,
0 if q1 + q2 ≥ a.

For any qj, the optimal quantity of firm i is

qi(qj) =

{
(a− qj)/2 if qj < a,
any nonnegative qi if qj ≥ a.

Remember the definition of best response.
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