

Chapter 5: Pinning Down Beliefs: Nash Equilibrium

Outline

- Nash equilibrium (Section 5.1)
- 5 (modified) examples (Section 5.2)
- Brief discussion on Nash equilibrium (MWG Chap.8)

Section 5.1

5.1 Nash Equilibrium in Pure Strategies

Definition 5.1 The pure-strategy profile

$s^* = (s_1^*, \dots, s_n^*) \in S$ is a **Nash equilibrium** if s_i^* is a best response to s_{-i}^* , for all $i \in N$, that is,

$$v_i(s_i^*, s_{-i}^*) \geq v_i(s'_i, s_{-i}^*) \text{ for all } s'_i \in S_i \text{ and all } i \in N.$$

Section 5.1

Definition 5.1 The pure-strategy profile

$s^* = (s_1^*, \dots, s_n^*) \in S$ is a **Nash equilibrium** if s_i^* is a best response to s_{-i}^* , for all $i \in N$, that is,

$$v_i(s_i^*, s_{-i}^*) \geq v_i(s'_i, s_{-i}^*) \text{ for all } s'_i \in S_i \text{ and all } i \in N.$$

Remember the definition of best response: The strategy $s_i \in S_i$ is player i 's *best response* to his opponents' strategies $s_{-i} \in S_{-i}$ if

$$v_i(s_i, s_{-i}) \geq v_i(s'_i, s_{-i}) \quad \forall s'_i \in S_i.$$

Section 5.1

Definition 5.1 The pure-strategy profile

$s^* = (s_1^*, \dots, s_n^*) \in S$ is a **Nash equilibrium** if s_i^* is a best response to s_{-i}^* , for all $i \in N$, that is,

$$v_i(s_i^*, s_{-i}^*) \geq v_i(s_i', s_{-i}^*) \text{ for all } s_i' \in S_i \text{ and all } i \in N.$$

Question Find Nash equilibria.

1/2	L	M	H
L	6,6	2,8	0,4
M	8,2	4,4	1,3
H	4,0	3,1	2,2

Section 5.1

Definition 5.1 The pure-strategy profile

$s^* = (s_1^*, \dots, s_n^*) \in S$ is a **Nash equilibrium** if s_i^* is a best response to s_{-i}^* , for all $i \in N$, that is,

$$v_i(s_i^*, s_{-i}^*) \geq v_i(s_i', s_{-i}^*) \text{ for all } s_i' \in S_i \text{ and all } i \in N.$$

Proposition 5.1 Consider a strategy profile

$s^* = (s_1^*, \dots, s_n^*) \in S$. If s^* is either

1. a strict dominant strategy equilibrium, or
2. the unique survivor of IESDS,

then s^* is the unique Nash equilibrium.

Section 5.1

Definition 5.1 The pure-strategy profile

$s^* = (s_1^*, \dots, s_n^*) \in S$ is a **Nash equilibrium** if s_i^* is a best response to s_{-i}^* , for all $i \in N$, that is,

$$v_i(s_i^*, s_{-i}^*) \geq v_i(s_i', s_{-i}^*) \text{ for all } s_i' \in S_i \text{ and all } i \in N.$$

Remark The requirements for a Nash equilibrium are

1. Each player is playing a *best response to his beliefs*.
2. The beliefs of the players about their opponents are *correct*.

Example (1)

Cournot Duopoly Firms 1 and 2 simultaneously set their quantities, q_1 and q_2 , respectively.

- $P(Q) = a - Q$: The market price where $Q = q_1 + q_2$.
- $C_i(q_i) = c_i q_i$: The total cost to firm i , $c_i \in (0, a/2)$.

Example (1)

Cournot Duopoly Firms 1 and 2 simultaneously set their quantities, q_1 and q_2 , respectively.

- $P(Q) = a - Q$: The market price where $Q = q_1 + q_2$.
- $C_i(q_i) = c_i q_i$: The total cost to firm i , $c_i \in (0, a/2)$.

Nash equilibrium In the context of this model, the equilibrium quantity of firm i is written as

$$q_i^* = \arg \max_{0 \leq q_i < \infty} \pi_i(q_i, q_j^*) = \arg \max_{0 \leq q_i < \infty} (a - (q_i + q_j^*) - c_i) q_i.$$

Example (1)

Cournot Duopoly Firms 1 and 2 simultaneously set their quantities, q_1 and q_2 , respectively.

- $P(Q) = a - Q$: The market price where $Q = q_1 + q_2$.
- $C_i(q_i) = c_i q_i$: The total cost to firm i , $c_i \in (0, a/2)$.

Nash equilibrium In the context of this model, the equilibrium quantity of firm i is written as

$$q_i^* = \arg \max_{0 \leq q_i < \infty} \pi_i(q_i, q_j^*) = \arg \max_{0 \leq q_i < \infty} (a - (q_i + q_j^*) - c_i) q_i.$$

Solving the problem, we have

$$q_i = \frac{a - c_i - q_j^*}{2} \rightarrow q_i^* = \frac{a - 2c_i + c_j}{3}.$$

Example (1)

Nash equilibrium
firm i leads to

Given q_j , the optimization problem of

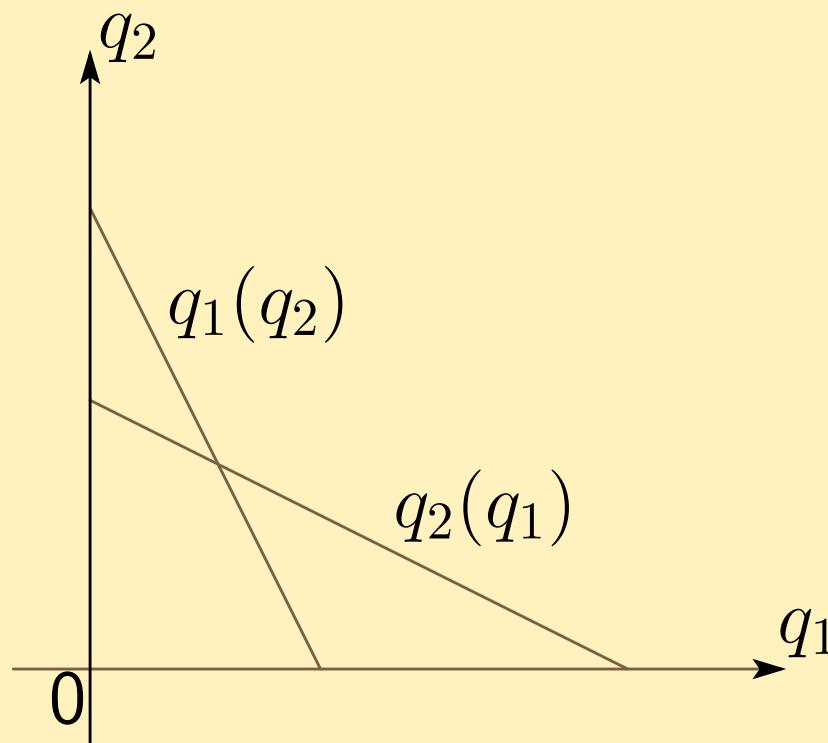
$$q_i(q_j) = \frac{a - c_i - q_j}{2}.$$

Example (1)

Nash equilibrium
firm i leads to

Given q_j , the optimization problem of

$$q_i(q_j) = \frac{a - c_i - q_j}{2}.$$

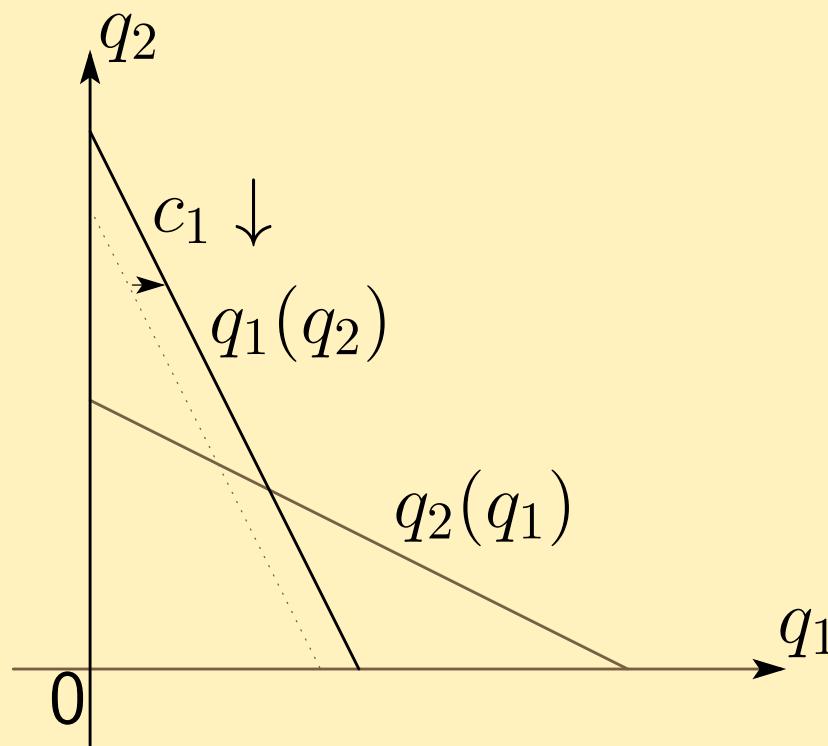


Example (1)

Nash equilibrium
firm i leads to

Given q_j , the optimization problem of

$$q_i(q_j) = \frac{a - c_i - q_j}{2}.$$



Example (2)

Bertrand competition There are two firms with homogeneous products and identical constant marginal cost c .

Example (2)

Bertrand competition There are two firms with homogeneous products and identical constant marginal cost c .

Demand The market demand is denoted by $Q_i(p_i, p_j)$ ($i = 1, 2, j \neq i$).

Example (2)

Profits The profit of firm i is given by ($i = 1, 2$)

$$\Pi^i(p_i, p_j) = (p_i - c)Q_i(p_i, p_j),$$

where firm i faces demand

$$Q_i(p_i, p_j) = \begin{cases} Q(p_i) & \text{if } p_i < p_j, \\ Q(p_i)/2 & \text{if } p_i = p_j, \\ 0 & \text{if } p_i > p_j, \end{cases}$$

where $Q'(p) < 0$ and $Q''(p) < 0$ to secure the S.O.C. in the case of monopoly.

Example (2)

Profits The profit of firm i is given by ($i = 1, 2$)

$$\Pi^i(p_i, p_j) = \begin{cases} (p_i - c)Q(p_i) & \text{if } p_i < p_j, \\ (p_i - c)Q(p_i)/2 & \text{if } p_i = p_j, \\ 0 & \text{if } p_i > p_j. \end{cases}$$

Proposition There is a unique Nash equilibrium in which each firm sets $p_i = c$ ($i = 1, 2$).

Example (2)

Profits The profit of firm i is given by ($i = 1, 2$)

$$\Pi^i(p_i, p_j) = \begin{cases} (p_i - c)Q(p_i) & \text{if } p_i < p_j, \\ (p_i - c)Q(p_i)/2 & \text{if } p_i = p_j, \\ 0 & \text{if } p_i > p_j. \end{cases}$$

Proposition There is a unique Nash equilibrium in which each firm sets $p_i = c$ ($i = 1, 2$).

Proving that $p_1 = p_2 = c$ is a Nash equilibrium is easy.

Example (2)

Profits The profit of firm i is given by ($i = 1, 2$)

$$\Pi^i(p_i, p_j) = \begin{cases} (p_i - c)Q(p_i) & \text{if } p_i < p_j, \\ (p_i - c)Q(p_i)/2 & \text{if } p_i = p_j, \\ 0 & \text{if } p_i > p_j. \end{cases}$$

Proposition There is a unique Nash equilibrium in which each firm sets $p_i = c$ ($i = 1, 2$).

We need to consider three cases to prove the uniqueness:

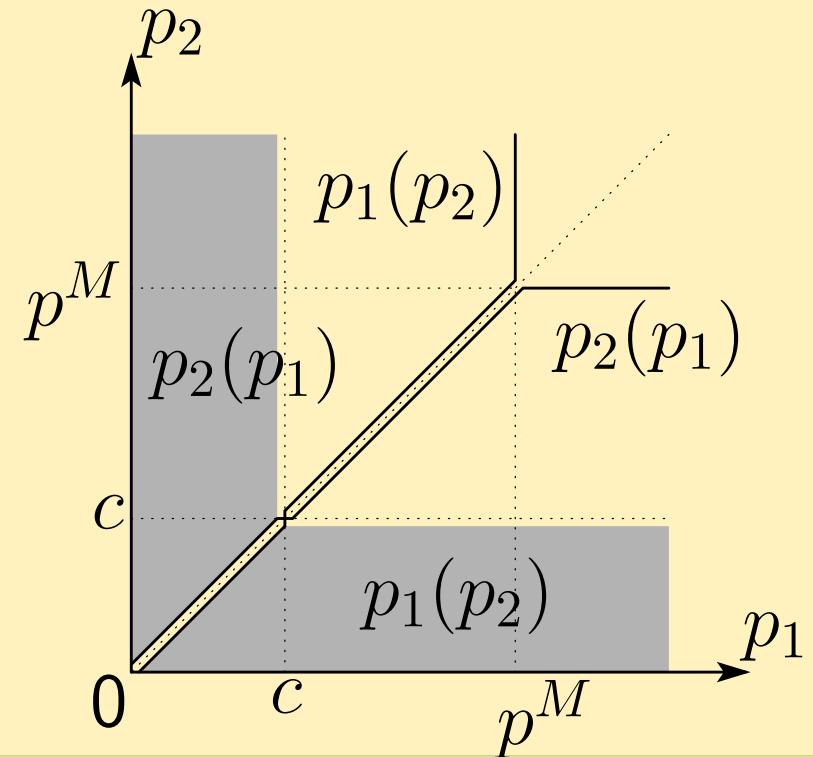
1. At least one of the prices is strictly lower than c .
2. $p_1 = p_2 > c$.
3. $p_i > p_j \geq c$.

Example (2)

Proposition There is a unique Nash equilibrium in which each firm sets $p_i = c$ ($i = 1, 2$).

We need to consider three cases to prove the uniqueness:

1. At least one of the prices is strictly lower than c .
2. $p_1 = p_2 > c$.
3. $p_i > p_j \geq c$.



Example (3)

the Commons (Gibbons, pp.27-9) n farmers exist.

Example (3)

the Commons (Gibbons, pp.27-9) n farmers exist.
All the farmers graze their goats on the village green.

Example (3)

the Commons (Gibbons, pp.27-9) n farmers exist.

All the farmers graze their goats on the village green.

Goats g_i : The number of goats farmer i owns.

$$G \equiv \sum_{i=1}^n g_i.$$

Example (3)

the Commons (Gibbons, pp.27-9) n farmers exist.

Goats g_i : The number of goats farmer i owns.

$$G \equiv \sum_{i=1}^n g_i.$$

Costs c : The cost of buying and caring for a goat.

Example (3)

the Commons (Gibbons, pp.27-9) n farmers exist.

Goats g_i : The number of goats farmer i owns.

$$G \equiv \sum_{i=1}^n g_i.$$

Costs c : The cost of buying and caring for a goat.

Value $v(G)$: The value of a goat when the total number is G .

Example (3)

the Commons (Gibbons, pp.27-9) n farmers exist.

Goats g_i : The number of goats farmer i owns.

$$G \equiv \sum_{i=1}^n g_i.$$

Costs c : The cost of buying and caring for a goat.

Value $v(G)$: The value of a goat when the total number is G .

$v(G) > 0$ for $G < G_{max}$ but $v(G) = 0$ for $G \geq G_{max}$.

Example (3)

Goats g_i : The number of goats farmer i owns.

$$G \equiv \sum_{i=1}^n g_i.$$

Costs c : The cost of buying and caring for a goat.

Value $v(G)$: The value of a goat when the total number is G .

$v(G) > 0$ for $G < G_{max}$ but $v(G) = 0$ for $G \geq G_{max}$.

Payoff The payoff of farmer i is

$$g_i v(G) - c g_i.$$

Example (3)

Goats g_i : The number of goats farmer i owns.

$$G \equiv \sum_{i=1}^n g_i.$$

Costs c : The cost of buying and caring for a goat.

Value $v(G)$: The value of a goat when the total number is G . $v'(G) < 0$, $v''(G) < 0$.

Payoff The payoff of farmer i is

$$g_i v(G) - c g_i.$$

The first-order condition is

$$v(G) + g_i v'(G) - c = 0.$$

Example (3)

Goats g_i : The number of goats farmer i owns.

$$G \equiv \sum_{i=1}^n g_i.$$

Costs c : The cost of buying and caring for a goat.

Value $v(G)$: The value of a goat when the total number is G . $v'(G) < 0$, $v''(G) < 0$.

Payoff The first-order condition is

$$v(G) + g_i v'(G) - c = 0.$$

Summing n equations, we have

$$nv(G) + Gv'(G) - nc = 0 \rightarrow v(G) + \frac{G}{n}v'(G) - c = 0.$$

Example (3)

Goats g_i : The number of goats farmer i owns.

$$G \equiv \sum_{i=1}^n g_i.$$

Costs c : The cost of buying and caring for a goat.

Value $v(G)$: The value of a goat when the total number is G . $v'(G) < 0$, $v''(G) < 0$.

Payoff Summing n equations, we have

$$nv(G) + Gv'(G) - nc = 0 \rightarrow v(G) + \frac{G}{n}v'(G) - c = 0.$$

Social optimum The objective to achieve the social optimum and the first-order condition are

$$\max_G Gv(G) - cG, \quad v(G) + Gv'(G) - c = 0.$$

Example (4)

Voting problem Consider an interval with length 1. Voters are uniformly distributed along the interval, $[0, 1]$.

Example (4)

Voting problem Consider an interval with length 1.

Voters are uniformly distributed along the interval, $[0, 1]$.

Candidates The number of candidates is 2.

Each candidate chooses its position on the unit interval.

Example (4)

Voting problem Consider an interval with length 1.

Voters are uniformly distributed along the interval, $[0, 1]$.

Candidates The number of candidates is 2.

Each candidate chooses its position on the unit interval.

The objective of each candidate is to **win the election**.

Voters Each voter votes for the candidate whose location is closest to the voter's location.

Example (4)

Voting problem Consider an interval with length 1.

Voters are uniformly distributed along the interval, $[0, 1]$.

Candidates The number of candidates is 2.

Each candidate chooses its position on the unit interval.

The objective of each candidate is to **win the election**.

Voters Each voter votes for the candidate whose location is closest to the voter's location. If two candidates locate at the same location, they equally get the votes by voters who prefer the two candidates to others.

Example (4)

Voting problem Consider an interval with length 1.

Voters are uniformly distributed along the interval, $[0, 1]$.

Candidates The number of candidates is 2.

Each candidate chooses its position on the unit interval.

The objective of each candidate is to **win the election**.

Voters Each voter votes for the candidate whose location is closest to the voter's location.

Timing The candidates simultaneously choose their locations.

Example (4)

Voting problem Consider an interval with length 1.

Voters are uniformly distributed along the interval, $[0, 1]$.

Candidates The number of candidates is 2.

Each candidate chooses its position on the unit interval.

The objective of each candidate is to **win the election**.

Voters Each voter votes for the candidate whose location is closest to the voter's location.

Timing The candidates simultaneously choose their locations.

Equilibrium The two candidates locate at the center, $1/2$.

Example (4)

Voting problem Consider an interval with length 1.

Voters are uniformly distributed along the interval, $[0, 1]$.

Candidates The number of candidates is 3.

Each candidate chooses its position on the unit interval.

The objective of each candidate is to **win the election**.

Voters Each voter votes for the candidate whose location is closest to the voter's location.

Timing The candidates simultaneously choose their locations. What happens if the number of candidates is 3?

Example (4)

Voting problem Consider an interval with length 1.

Voters are uniformly distributed along the interval, $[0, 1]$.

Candidates The number of candidates is 3.

Each candidate chooses its position on the unit interval.

The objective of each candidate is to **win the election**.

Voters Each voter votes for the candidate whose location is closest to the voter's location.

Timing The candidates simultaneously choose their locations.

Equilibrium Continuously many equilibria exist!

Example (5)

Shopping problem Consider an interval with length 1. Consumers are uniformly distributed along the interval, $[0, 1]$.

Example (5)

Shopping problem Consider an interval with length 1. Consumers are uniformly distributed along the interval, $[0, 1]$.

Firms The number of firms is 2.

Each firm without production costs chooses its location on the unit interval. The price is regulated at $\bar{p}(> 0)$.

Example (5)

Shopping problem Consider an interval with length 1. Consumers are uniformly distributed along the interval, $[0, 1]$.

Firms The number of firms is 2.

Each firm without production costs chooses its location on the unit interval. The price is regulated at $\bar{p}(> 0)$.

The objective of each firm is to **maximize its profit**.

Consumers Each consumer buys from the firm whose location is closest to the consumer's location.

Example (5)

Shopping problem Consider an interval with length 1. Consumers are uniformly distributed along the interval, $[0, 1]$.

Firms The number of firms is 2.

Each firm without production costs chooses its location on the unit interval. The price is regulated at $\bar{p}(> 0)$.

The objective of each firm is to **maximize its profit**.

Consumers Each consumer buys from the firm whose location is closest to the consumer's location. If two firms locate at the same location, they equally get the demands of consumers who prefer the two firms to others.

Example (5)

Shopping problem Consider an interval with length 1.

Consumers are uniformly distributed along the interval, $[0, 1]$.

Firms The number of firms is 2.

Each firm without production costs chooses its location on the unit interval. The price is regulated at $\bar{p}(> 0)$.

The objective of each firm is to **maximize its profit**.

Consumers Each consumer buys from the firm whose location is closest to the consumer's location.

Timing The firms simultaneously choose their locations.

Example (5)

Shopping problem Consider an interval with length 1.

Consumers are uniformly distributed along the interval, $[0, 1]$.

Firms The number of firms is 2.

Each firm without production costs chooses its location on the unit interval. The price is regulated at $\bar{p}(> 0)$.

The objective of each firm is to **maximize its profit**.

Consumers Each consumer buys from the firm whose location is closest to the consumer's location.

Timing The firms simultaneously choose their locations.

Equilibrium The two firms locate at the center, $1/2$.

Example (5)

Shopping problem Consider an interval with length 1.

Consumers are uniformly distributed along the interval, $[0, 1]$.

Firms The number of firms is $n(\geq 3)$.

Each firm without production costs chooses its location on the unit interval. The price is regulated at $\bar{p}(> 0)$.

The objective of each firm is to **maximize its profit**.

Consumers Each consumer buys from the firm whose location is closest to the consumer's location.

Timing The firms simultaneously choose their locations.

What happens if the number of firms is $n(\geq 3)$?

Example (5)

Shopping problem Consider an interval with length 1.

Consumers are uniformly distributed along the interval, $[0, 1]$.

Firms The number of firms is $n(\geq 3)$.

Each firm without production costs chooses its location on the unit interval. The price is regulated at $\bar{p}(> 0)$.

The objective of each firm is to **maximize its profit**.

Consumers Each consumer buys from the firm whose location is closest to the consumer's location.

Timing The firms simultaneously choose their locations.

Equilibrium If $n = 3$, no pure strategy equilibrium exists!, otherwise, a pure strategy equilibrium exists.

Discussion on Nash eq.

1. Nash equilibrium as a consequence of rational inference.
Why correct forecasts?

Discussion on Nash eq.

1. Nash equilibrium as a consequence of rational inference.
Why correct forecasts?
2. Nash equilibrium as a necessary condition if there is a unique predicted outcome to game.
Why unique prediction?

Discussion on Nash eq.

1. Nash equilibrium as a consequence of rational inference.
Why correct forecasts?
2. Nash equilibrium as a necessary condition if there is a unique predicted outcome to game.
Why unique prediction?
3. Focal points.
Outcomes could be determined by culture, etc.

Discussion on Nash eq.

1. Nash equilibrium as a consequence of rational inference.
Why correct forecasts?
2. Nash equilibrium as a necessary condition if there is a unique predicted outcome to game.
Why unique prediction?
3. Focal points.
Outcomes could be determined by culture, etc.
4. Nash equilibrium as a self-enforcing agreement.
Preplay communication.

Discussion on Nash eq.

1. Nash equilibrium as a consequence of rational inference.
Why correct forecasts?
2. Nash equilibrium as a necessary condition if there is a unique predicted outcome to game.
Why unique prediction?
3. Focal points.
Outcomes could be determined by culture, etc.
4. Nash equilibrium as a self-enforcing agreement.
Preplay communication.
5. Nash equilibrium as a stable social convention.
Repetition of play; How to play repeated game?

Discussion on Nash eq.

1. Nash equilibrium as a consequence of rational inference.
Why correct forecasts?
2. Nash equilibrium as a necessary condition if there is a unique predicted outcome to game.
Why unique prediction?
3. Focal points.
Outcomes could be determined by culture, etc.
4. Nash equilibrium as a self-enforcing agreement.
Preplay communication.
5. Nash equilibrium as a stable social convention.
Repetition of play; How to play repeated game?

See MWG Chapter 8 for the detail discussion.