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� Strategies, Beliefs, and Expected Payoffs (Section 6.1)

� Mixed-Strategy Nash Equilibrium (Section 6.2)

� 4 examples
� Nash’s existence theorem (Section 6.4)

Please see the supplement if you are interested in the
proof.
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6.1 Nash Equilibrium in Pure Strategies
6.1.1 Finite Strategy Sets

Motivating example (Matching pennies)

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1
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6.1 Nash Equilibrium in Pure Strategies
6.1.1 Finite Strategy Sets

Motivating example (Matching pennies)

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

No pure strategy Nash equilibrium exists.



Section 6.1

3 / 12

Definition 6.1 Let Si = {si1, si2, . . . , sim} be player i’s
finite set of pure strategies. Define ΔSi as the simplex of
Si, which is the set of all probability distribution over Si.
A mixed strategy for player i is an element σi ∈ ΔSi, so
that σi = {σi(si1), σi(si2), . . . , σi(sim)} is a probability
distribution over Si, where σi(sik) is the probability that
player i plays sik (k = 1, 2, . . . ,m).

1. σi(si) ≥ 0 for all si ∈ Si; 2.
∑

si∈Si
σi(si) = 1.
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Definition 6.1 A mixed strategy for player i is an
element σi ∈ ΔSi, so that
σi = {σi(si1), σi(si2), . . . , σi(sim)} is a probability
distribution over Si, where σi(sik) is the probability that
player i plays sik (k = 1, 2, . . . ,m).

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

(ex.) σ1 = (σ1(H), σ1(L)) = (1/3, 2/3).

Player 1 plays H with prob. 1/3 and L with prob. 2/3.
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Definition 6.1 A mixed strategy for player i is an
element σi ∈ ΔSi, so that
σi = {σi(si1), σi(si2), . . . , σi(sim)} is a probability
distribution over Si, where σi(sik) is the probability that
player i plays sik (k = 1, 2, . . . ,m).

Definition 6.2 Given a mixed strategy σi(·) for player i,
we will say that a pure strategy si ∈ Si is in the support
of σi iff it occurs with positive probability, that is,
σi(si) > 0.
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6.1.2 Continuous Strategy Sets

Definition 6.3 Let Si be player i’s pure strategy set and
assume that Si is an interval. A mixed strategy for
player i is a cumulative distribution function
Fi : Si → [0, 1], where Fi(x) = Pr{si ≤ x}. If Fi(·) is
differentiable with density fi(·), then we say that si ∈ Si

is in the support of Fi(·) if fi(si) > 0.
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Definition 6.3 A mixed strategy for player i is a
cumulative distribution function Fi : Si → [0, 1], where
Fi(x) = Pr{si ≤ x}.
(ex) The Cournot duopoly with a capacity constraint of
100 unit of production, so that Si = [0, 100] (i = 1, 2).

Fi(si) =

⎧⎪⎪⎨
⎪⎪⎩

0 for si ∈ [0, 30)
si − 30

20
for si ∈ [30, 50]

1 for si ∈ (50, 100]
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Definition 6.3 A mixed strategy for player i is a
cumulative distribution function Fi : Si → [0, 1], where
Fi(x) = Pr{si ≤ x}.
(ex) The Cournot duopoly with a capacity constraint of
100 unit of production, so that Si = [0, 100] (i = 1, 2).

fi(si) =

⎧⎪⎪⎨
⎪⎪⎩

0 for si ∈ [0, 30)
1

20
for si ∈ [30, 50]

1 for si ∈ (50, 100]

Player i chooses a quantity between 30 to 50 using a
uniform distribution.
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6.1.3 Beliefs and Mixed Strategies

Definition 6.4 A belief for player i is given by a
probability distribution πi ∈ ΔS−i over the strategies of
his opponents. We denote by πi(s−i) the probability
player i assigns to his opponents playing s−i ∈ S−i.

In the matching pennies game, the belief of player 1 is
represented by (π1(H2), π1(T2)), where
π1(H2), π1(T2) ≥ 0 and π1(H2) + π1(T2) = 1 (each
subscript represents player i).
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6.1.4 Expected Payoffs

Definition 6.5 The expected payoff of player i when
he chooses the pure strategy si ∈ Si and his opponents
play the mixed strategy σ−i ∈ ΔS−i is

vi(si, σ−i) =
∑

s−i∈S−i

σ−i(s−i)vi(si, s−i).
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Definition 6.5 Similarly, the expected payoff of player i
when he chooses the mixed strategy σi ∈ ΔSi and his
opponents play the mixed strategy σ−i ∈ ΔS−i is

vi(σi, σ−i) =
∑
si∈Si

σi(si)vi(si, σ−i)

=
∑
si∈Si

⎛
⎝ ∑

s−i∈S−i

σi(si)σ−i(s−i)vi(si, s−i)

⎞
⎠ .
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Example The rock-paper-scissors game

1/2 R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0
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Example The rock-paper-scissors game

1/2 R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Suppose that player 2’s mixed strategy is
σ2 = (σ2(R), σ2(P ), σ2(S)) = (1/3, 2/3, 0).
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Example The rock-paper-scissors game

1/2 R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Suppose that player 2’s mixed strategy is
σ2 = (σ2(R), σ2(P ), σ2(S)) = (1/3, 2/3, 0).

The expected payoffs of player 1 from his strategies are

v1(R, σ2) = (1/3)× 0 + (2/3)× (−1) + 0× 1 = −2/3,

v1(P, σ2) = (1/3)× 1 + (2/3)× 0 + 0× (−1) = 1/3,

v1(S, σ2) = (1/3)× (−1) + (2/3)× 1 + 0× 0 = 1/3.
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6.2 Mixed-Strategy Nash Equilibrium

Definition 6.6 The mixed-strategy profile
σ∗ = (σ∗

1, σ
∗
2, . . . , σ

∗
n) is a Nash equilibrium if σ∗

i is a best
response to σ∗

−i, for all i ∈ N . That is, for all i ∈ N ,

vi(σ
∗
i , σ

∗
−i) ≥ vi(σi, σ

∗
−i) ∀σi ∈ ΔSi.

Definition 5.1 The pure-strategy profile
s∗ = (s∗1, . . . , sn∗) ∈ S is a Nash equilibrium if s∗i is a best
response to s∗−i, for all i ∈ N , that is,

vi(s
∗
i , s

∗
−i) ≥ vi(s

′
i, s

∗
−i) for all s′i ∈ Si and all i ∈ N.
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Definition 6.6 The mixed-strategy profile
σ∗ = (σ∗

1, σ
∗
2, . . . , σ

∗
n) is a Nash equilibrium if σ∗

i is a best
response to σ∗

−i, for all i ∈ N . That is, for all i ∈ N ,

vi(σ
∗
i , σ

∗
−i) ≥ vi(σi, σ

∗
−i) ∀σi ∈ ΔSi.

Proposition 6.1 Given σi ∈ ΔSi, denote
S+
i (σi) = {si ∈ Si|σi(si) > 0} (the set of the support of

σ∗
i ). A mixed strategy profile σ is a Nash equilibrium if

and only if ∀i ∈ N

(i) ∀si ∈ S+
i (σi), ∀ŝi ∈ S+

i (σi), vi(si, σ−i) = vi(ŝi, σ−i),

(ii) ∀si ∈ S+
i (σi), ∀ŝi /∈ S+

i (σi), vi(si, σ−i) ≥ vi(ŝi, σ−i).
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Proposition 6.1 Given σi ∈ ΔSi, denote
S+
i (σi) = {si ∈ Si|σi(si) > 0}. A mixed strategy profile σ

is a Nash equilibrium if and only if ∀i ∈ N

(i) ∀si ∈ S+
i (σi), ∀ŝi ∈ S+

i (σi), vi(si, σ−i) = vi(ŝi, σ−i),

(ii) ∀si ∈ S+
i (σi), ∀ŝi /∈ S+

i (σi), vi(si, σ−i) ≥ vi(ŝi, σ−i).

Proof (rough sketch) “only if part”: if either (i) or (ii)

does not hold for some i, there are strategies si ∈ S+
i and

s′i ∈ Si such that vi(s
′
i, σ−i) > vi(si, σ−i).
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Proposition 6.1 Given σi ∈ ΔSi, denote
S+
i (σi) = {si ∈ Si|σi(si) > 0}. A mixed strategy profile σ

is a Nash equilibrium if and only if ∀i ∈ N

(i) ∀si ∈ S+
i (σi), ∀ŝi ∈ S+

i (σi), vi(si, σ−i) = vi(ŝi, σ−i),

(ii) ∀si ∈ S+
i (σi), ∀ŝi /∈ S+

i (σi), vi(si, σ−i) ≥ vi(ŝi, σ−i).

Proof (rough sketch) “if part”: Suppose that (i) and
(ii) hold but σ is not a Nash equilibrium. There is some i
who has a strategy σ′

i with vi(σ
′
i, σ−i) > vi(σi, σ−i). For

some pure strategy s′i with σ′
i(s

′
i) > 0,

vi(s
′
i, σ−i) > vi(σi, σ−i).
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All-pay-auction There are two players who can bid for a
dollar. Each can set a bid that is on the interval [0, 1],
that is, Si = [0, 1]. The players need to pay their bids, s1
and s2, regardless of the bidding outcome.
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All-pay-auction There are two players who can bid for a
dollar. Si = [0, 1]. The players need to pay their bids, s1
and s2, regardless of the bidding outcome.

The person with the higher bid gets the dollar. If there is
a tie, the dollar is awarded to each with prob 1/2.

The payoff of player i is

vi(si, s−i) =

⎧⎨
⎩

−si if si < sj
1/2− si if si = sj
1− si if si > sj.

(1) Show that there is no pure strategy Nash equilibrium.
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All-pay-auction There are two players who can bid for a
dollar. Si = [0, 1]. The players need to pay their bids, s1
and s2, regardless of the bidding outcome.

The payoff of player i is

vi(si, s−i) =

⎧⎨
⎩

−si if si < sj
1/2− si if si = sj
1− si if si > sj.

(2) Show that the following is a Nash equilibrium:

Fi(si) = si for si ∈ [0, 1] (i = 1, 2).

Page 107 in Tadelis shows that vi(si, σj) = 0 ∀si ∈ [0, 1].
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Matching Pennies No pure strategy Nash equilibrium.

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

Consider the following mixed strategy profile:
σ = (σ1(H), σ1(T ), σ2(H), σ2(T )) = (p, 1− p, q, 1− q).
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Matching Pennies No pure strategy Nash equilibrium.

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

σ = (σ1(H), σ1(T ), σ2(H), σ2(T )) = (p, 1− p, q, 1− q).

Player 1’s expected payoff for each pure strategy

v1(H, σ2) = q × 1 + (1− q)× (−1) = 2q − 1,

v1(T, σ2) = q × (−1) + (1− q)× 1 = 1− 2q,
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Matching Pennies No pure strategy Nash equilibrium.

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

σ = (σ1(H), σ1(T ), σ2(H), σ2(T )) = (p, 1− p, q, 1− q).

Player 1’s expected payoff for each pure strategy

v1(H, σ2) = q × 1 + (1− q)× (−1) = 2q − 1,

v1(T, σ2) = q × (−1) + (1− q)× 1 = 1− 2q,

Playing H (T ) is strictly better iff q > 1/2 (q < 1/2).
Each of them is indifferent iff q = 1/2.



Example (2)

9 / 12

Matching Pennies No pure strategy Nash equilibrium.

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

σ = (σ1(H), σ1(T ), σ2(H), σ2(T )) = (p, 1− p, q, 1− q).

Playing H (T ) is strictly better iff q > 1/2 (q < 1/2).
Each of them is indifferent iff q = 1/2.

The best-response correspondence of player 1

BR1(q) =

⎧⎨
⎩

p = 0 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 1 if q > 1/2.
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Matching Pennies No pure strategy Nash equilibrium.

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

σ = (σ1(H), σ1(T ), σ2(H), σ2(T )) = (p, 1− p, q, 1− q).

BR1(q) =

⎧⎨
⎩

p = 0 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 1 if q > 1/2.

σ1(H)

σ2(H)

0 1

1

1/2
BR1
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Matching Pennies No pure strategy Nash equilibrium.

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

σ = (σ1(H), σ1(T ), σ2(H), σ2(T )) = (p, 1− p, q, 1− q).

BR1(q) =

⎧⎨
⎩

p = 0 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 1 if q > 1/2.

BR2(p) =

⎧⎨
⎩

q = 1 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 0 if p > 1/2.
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Matching Pennies No pure strategy Nash equilibrium.

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

σ = (σ1(H), σ1(T ), σ2(H), σ2(T )) = (p, 1− p, q, 1− q).

BR1(q) =

⎧⎨
⎩

p = 0 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 1 if q > 1/2.

BR2(p) =

⎧⎨
⎩

q = 1 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 0 if p > 1/2.

σ1(H)

σ2(H)

0 11/2

1
BR2
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Matching Pennies No pure strategy Nash equilibrium.

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

σ = (σ1(H), σ1(T ), σ2(H), σ2(T )) = (p, 1− p, q, 1− q).

BR1(q) =

⎧⎨
⎩

p = 0 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 1 if q > 1/2.

BR2(p) =

⎧⎨
⎩

q = 1 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 0 if p > 1/2.

σ1(H)

σ2(H)

0 11/2

1

1/2

BR2

BR1

NE
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Matching Pennies No pure strategy Nash equilibrium.

1/2 H T
H 1,−1 −1, 1
T −1, 1 1,−1

� If a player is mixing several strategies, he must be
indifferent between them.

� In the Matching Pennies game, we check which
strategy of player 2 will make player 1 indifferent
between playing H and T .
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Rock-paper-Scissors No pure strategy Nash equilibrium.

1/2 R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0
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Rock-paper-Scissors No pure strategy Nash equilibrium.

1/2 R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

No Nash eq. where one player plays a pure strategy and
the other mixes.
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Rock-paper-Scissors No pure strategy Nash equilibrium.

1/2 R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

No Nash eq. where at least one player mixes only two of
the pure strategies.
By symmetry, suppose that player i mixes only R and P .
Given this, P 	j R, which induces player j not to play R
with a positive prob.. Given this response by player j,
S 	i P , which changes the initially assumed strategy of
player i. A contradiction.
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Rock-paper-Scissors No pure strategy Nash equilibrium.

1/2 R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Each player must mix the three strategies.

Suppose that player i’s mixed strategy is
σi = (σi(R), σi(P ), 1− σi(R)− σi(P )).
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Rock-paper-Scissors No pure strategy Nash equilibrium.

1/2 R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Each player must mix the three strategies.

Suppose that player i’s mixed strategy is
σi = (σi(R), σi(P ), 1− σi(R)− σi(P )).

vj(R, σi) = 1− σi(R)− 2σi(P ),

vj(P, σi) = −1 + 2σi(R) + σi(P ).

vj(S, σi) = −σi(R) + σi(P ).
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Rock-paper-Scissors No pure strategy Nash equilibrium.

1/2 R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Each player must mix the three strategies.

Suppose that player i’s mixed strategy is
σi = (σi(R), σi(P ), 1− σi(R)− σi(P )).

vj(R, σi) = 1− σi(R)− 2σi(P ),

vj(P, σi) = −1 + 2σi(R) + σi(P ).

vj(S, σi) = −σi(R) + σi(P ).

If vj(R, σi) = vj(P, σi) = vj(S, σi), player j mixes R, P , and S.
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Bertrand competition (Kwong, 2003, CJE) Two
firms with identical constant marginal cost c exist.
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Bertrand competition (Kwong, 2003, CJE) Two
firms with identical constant marginal cost c exist.

Consumers Type i loyal consumers buy only product i iff
pi ≤ r (r is their reservation price). The mass is L.
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Bertrand competition (Kwong, 2003, CJE) Two
firms with identical constant marginal cost c exist.

Consumers Type i loyal consumers buy only product i iff
pi ≤ r (r is their reservation price). The mass is L. Type
0 consumers buy a product with the lowest price, if which
is not larger than r. The mass is M .
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Consumers Type i loyal consumers buy only product i iff
pi ≤ r (r is their reservation price). The mass is L. Type
0 consumers buy a product with the lowest price, if which
is not larger than r. The mass is M .

Profits The profit of firm i is given by (i = 1, 2)

Πi(pi, pj) =

⎧⎨
⎩

(pi − c)(M + L) if pi < pj,

(pi − c)(M/2 + L) if pi = pj,

(pi − c)L if pi > pj.
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Profits The profit of firm i is given by (i = 1, 2)

Πi(pi, pj) =

⎧⎨
⎩

(pi − c)(M + L) if pi < pj,

(pi − c)(M/2 + L) if pi = pj,

(pi − c)L if pi > pj.

Mixed strategy Firm i randomizes pi according to some
distribution function Fi(pi). Assume that Fi is
continuously differentiable and that fi denotes the density
function.
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Profits The profit of firm i is given by (i = 1, 2)

Πi(pi, pj) =

⎧⎨
⎩

(pi − c)(M + L) if pi < pj,

(pi − c)(M/2 + L) if pi = pj,

(pi − c)L if pi > pj.

Mixed strategy Firm i randomizes pi according to some
distribution function Fi(pi).

Prove that the support of the price density is given by
[p, r].
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Mixed strategy Firm i randomizes pi according to some
distribution function Fi(pi).

Prove that the support of the price density is given by
[p, r].

� For any pi(> r), firm i earns no profit.
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Mixed strategy Firm i randomizes pi according to some
distribution function Fi(pi).

Prove that the support of the price density is given by
[p, r].

� For any pi(> r), firm i earns no profit.
� Each firm can earn a profit at least (r − c)L.
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Mixed strategy Firm i randomizes pi according to some
distribution function Fi(pi).

Prove that the support of the price density is given by
[p, r].

� For any pi(> r), firm i earns no profit.
� Each firm can earn a profit at least (r − c)L.
� A critical price below which it is unprofitable to price.
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Mixed strategy Firm i randomizes pi according to some
distribution function Fi(pi).

Prove that the support of the price density is given by
[p, r].

� For any pi(> r), firm i earns no profit.
� Each firm can earn a profit at least (r − c)L.
� A critical price below which it is unprofitable to price.

This critical price, p, is derived by the equation,
(p− c)(M + L) = (r − c)L.
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Mixed strategy Firm i randomizes pi according to some
distribution function Fi(pi).
The expected profit of firm i is given as∫ r

p

[(1− Fj(pi)) (pi − c)(M + L) + Fj(pi)(pi − c)L]fi(pi)dpi,

Solution Applying Proposition 6.1, we have the following
equation:

(1− Fj(pi)) (pi − c)(M + L) + Fj(pi)(pi − c)L = (r − c)L.
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Mixed strategy Firm i randomizes pi according to some
distribution function Fi(pi).
The expected profit of firm i is given as∫ r

p

[(1− Fj(pi)) (pi − c)(M + L) + Fj(pi)(pi − c)L]fi(pi)dpi,

Solution Applying Proposition 6.1, we have the following
equation:

(1− Fj(pi)) (pi − c)(M + L) + Fj(pi)(pi − c)L = (r − c)L.

Solving the equation with respect to F , we have

Fi(pi) = 1− (r − pi)L

(pi − c)M
.
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Mixed strategy Firm i randomizes pi according to some
distribution function Fi(pi).
The expected profit of firm i is given as∫ r

p

[(1− Fj(pi)) (pi − c)(M + L) + Fj(pi)(pi − c)L]fi(pi)dpi,

Solution Applying Proposition 6.1, we have the following
equation:

(1− Fj(pi)) (pi − c)(M + L) + Fj(pi)(pi − c)L = (r − c)L.

Solving the equation with respect to F , we have

Fi(pi) = 1− (r − pi)L

(pi − c)M
.

A related paper (Baye and Morgan, 2001, AER).
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Proposition Every game Γ = [N, {ΔSi}, {vi}] in which
the sets S1, . . . , Sn have a finite number of elements has a
mixed strategy Nash equilibrium.

Proposition A Nash equilibrium exists in game
Γ = [N, {Si}, {vi}] if ∀i ∈ N ,

1. Si is a nonempty, convex, and compact subset of
some Euclidean space R

M .
2. vi(s1, . . . , sn) is continuous in (s1, . . . , sn) and

quasi-concave in si.
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