

Chapter 6: Mixed Strategies

Outline

- Strategies, Beliefs, and Expected Payoffs (Section 6.1)
- Mixed-Strategy Nash Equilibrium (Section 6.2)
- 4 examples
- Nash's existence theorem (Section 6.4)
Please see the supplement if you are interested in the proof.

Section 6.1

6.1 Nash Equilibrium in Pure Strategies

6.1.1 Finite Strategy Sets

Motivating example (Matching pennies)

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

Section 6.1

6.1 Nash Equilibrium in Pure Strategies

6.1.1 Finite Strategy Sets

Motivating example (Matching pennies)

$1/2$	H	T
H	$\underline{1}, -1$	$-1, \underline{1}$
T	$-1, \underline{1}$	$\underline{1}, -1$

No pure strategy Nash equilibrium exists.

Section 6.1

Definition 6.1 Let $S_i = \{s_{i1}, s_{i2}, \dots, s_{im}\}$ be player i 's **finite** set of pure strategies. Define ΔS_i as the **simplex** of S_i , which is the set of all probability distribution over S_i . A **mixed strategy** for player i is an element $\sigma_i \in \Delta S_i$, so that $\sigma_i = \{\sigma_i(s_{i1}), \sigma_i(s_{i2}), \dots, \sigma_i(s_{im})\}$ is a probability distribution over S_i , where $\sigma_i(s_{ik})$ is the probability that player i plays s_{ik} ($k = 1, 2, \dots, m$).

1. $\sigma_i(s_i) \geq 0$ for all $s_i \in S_i$;
2. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$.

Section 6.1

Definition 6.1 A **mixed strategy** for player i is an element $\sigma_i \in \Delta S_i$, so that

$\sigma_i = \{\sigma_i(s_{i1}), \sigma_i(s_{i2}), \dots, \sigma_i(s_{im})\}$ is a probability distribution over S_i , where $\sigma_i(s_{ik})$ is the probability that player i plays s_{ik} ($k = 1, 2, \dots, m$).

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

(ex.) $\sigma_1 = (\sigma_1(H), \sigma_1(L)) = (1/3, 2/3)$.

Player 1 plays H with prob. $1/3$ and L with prob. $2/3$.

Section 6.1

Definition 6.1 A **mixed strategy** for player i is an element $\sigma_i \in \Delta S_i$, so that

$\sigma_i = \{\sigma_i(s_{i1}), \sigma_i(s_{i2}), \dots, \sigma_i(s_{im})\}$ is a probability distribution over S_i , where $\sigma_i(s_{ik})$ is the probability that player i plays s_{ik} ($k = 1, 2, \dots, m$).

Definition 6.2 Given a mixed strategy $\sigma_i(\cdot)$ for player i , we will say that a pure strategy $s_i \in S_i$ is in **the support of σ_i** iff it occurs with positive probability, that is, $\sigma_i(s_i) > 0$.

Section 6.1

6.1.2 Continuous Strategy Sets

Definition 6.3 Let S_i be player i 's pure strategy set and assume that S_i is an interval. A **mixed strategy** for player i is a cumulative distribution function

$F_i : S_i \rightarrow [0, 1]$, where $F_i(x) = \Pr\{s_i \leq x\}$. If $F_i(\cdot)$ is differentiable with density $f_i(\cdot)$, then we say that $s_i \in S_i$ is in the support of $F_i(\cdot)$ if $f_i(s_i) > 0$.

Section 6.1

Definition 6.3 A **mixed strategy** for player i is a cumulative distribution function $F_i : S_i \rightarrow [0, 1]$, where $F_i(x) = \Pr\{s_i \leq x\}$.

(ex) The Cournot duopoly with a capacity constraint of 100 unit of production, so that $S_i = [0, 100]$ ($i = 1, 2$).

$$F_i(s_i) = \begin{cases} 0 & \text{for } s_i \in [0, 30) \\ \frac{s_i - 30}{20} & \text{for } s_i \in [30, 50] \\ 1 & \text{for } s_i \in (50, 100] \end{cases}$$

Section 6.1

Definition 6.3 A **mixed strategy** for player i is a cumulative distribution function $F_i : S_i \rightarrow [0, 1]$, where $F_i(x) = \Pr\{s_i \leq x\}$.

(ex) The Cournot duopoly with a capacity constraint of 100 unit of production, so that $S_i = [0, 100]$ ($i = 1, 2$).

$$f_i(s_i) = \begin{cases} 0 & \text{for } s_i \in [0, 30) \\ \frac{1}{20} & \text{for } s_i \in [30, 50] \\ 1 & \text{for } s_i \in (50, 100] \end{cases}$$

Player i chooses a quantity between 30 to 50 using a uniform distribution.

Section 6.1

6.1.3 Beliefs and Mixed Strategies

Definition 6.4 A **belief** for player i is given by a *probability distribution* $\pi_i \in \Delta S_{-i}$ over the strategies of his opponents. We denote by $\pi_i(s_{-i})$ the probability player i assigns to his opponents playing $s_{-i} \in S_{-i}$.

In the matching pennies game, the belief of player 1 is represented by $(\pi_1(H_2), \pi_1(T_2))$, where $\pi_1(H_2), \pi_1(T_2) \geq 0$ and $\pi_1(H_2) + \pi_1(T_2) = 1$ (each subscript represents player i).

Section 6.1

6.1.4 Expected Payoffs

Definition 6.5 The **expected payoff** of player i when he chooses the pure strategy $s_i \in S_i$ and his opponents play the mixed strategy $\sigma_{-i} \in \Delta S_{-i}$ is

$$v_i(s_i, \sigma_{-i}) = \sum_{s_{-i} \in S_{-i}} \sigma_{-i}(s_{-i}) v_i(s_i, s_{-i}).$$

Section 6.1

Definition 6.5 Similarly, the expected payoff of player i when he chooses the mixed strategy $\sigma_i \in \Delta S_i$ and his opponents play the mixed strategy $\sigma_{-i} \in \Delta S_{-i}$ is

$$\begin{aligned} v_i(\sigma_i, \sigma_{-i}) &= \sum_{s_i \in S_i} \sigma_i(s_i) v_i(s_i, \sigma_{-i}) \\ &= \sum_{s_i \in S_i} \left(\sum_{s_{-i} \in S_{-i}} \sigma_i(s_i) \sigma_{-i}(s_{-i}) v_i(s_i, s_{-i}) \right). \end{aligned}$$

Section 6.1

Example The rock-paper-scissors game

$1/2$	R	P	S
R	$0, 0$	$-1, 1$	$1, -1$
P	$1, -1$	$0, 0$	$-1, 1$
S	$-1, 1$	$1, -1$	$0, 0$

Section 6.1

Example The rock-paper-scissors game

$1/2$	R	P	S
R	$0, 0$	$-1, 1$	$1, -1$
P	$1, -1$	$0, 0$	$-1, 1$
S	$-1, 1$	$1, -1$	$0, 0$

Suppose that player 2's mixed strategy is
 $\sigma_2 = (\sigma_2(R), \sigma_2(P), \sigma_2(S)) = (1/3, 2/3, 0)$.

Section 6.1

Example The rock-paper-scissors game

$1/2$	R	P	S
R	$0, 0$	$-1, 1$	$1, -1$
P	$1, -1$	$0, 0$	$-1, 1$
S	$-1, 1$	$1, -1$	$0, 0$

Suppose that player 2's mixed strategy is

$$\sigma_2 = (\sigma_2(R), \sigma_2(P), \sigma_2(S)) = (1/3, 2/3, 0).$$

The expected payoffs of player 1 from his strategies are

$$v_1(R, \sigma_2) = (1/3) \times 0 + (2/3) \times (-1) + 0 \times 1 = -2/3,$$

$$v_1(P, \sigma_2) = (1/3) \times 1 + (2/3) \times 0 + 0 \times (-1) = 1/3,$$

$$v_1(S, \sigma_2) = (1/3) \times (-1) + (2/3) \times 1 + 0 \times 0 = 1/3.$$

Section 6.2

6.2 Mixed-Strategy Nash Equilibrium

Definition 6.6 The mixed-strategy profile $\sigma^* = (\sigma_1^*, \sigma_2^*, \dots, \sigma_n^*)$ is a *Nash equilibrium* if σ_i^* is a best response to σ_{-i}^* , for all $i \in N$. That is, for all $i \in N$,

$$v_i(\sigma_i^*, \sigma_{-i}^*) \geq v_i(\sigma_i, \sigma_{-i}^*) \quad \forall \sigma_i \in \Delta S_i.$$

Definition 5.1 The pure-strategy profile $s^* = (s_1^*, \dots, s_n^*) \in S$ is a Nash equilibrium if s_i^* is a best response to s_{-i}^* , for all $i \in N$, that is,

$$v_i(s_i^*, s_{-i}^*) \geq v_i(s'_i, s_{-i}^*) \quad \text{for all } s'_i \in S_i \text{ and all } i \in N.$$

Section 6.2

Definition 6.6 The mixed-strategy profile

$\sigma^* = (\sigma_1^*, \sigma_2^*, \dots, \sigma_n^*)$ is a *Nash equilibrium* if σ_i^* is a best response to σ_{-i}^* , for all $i \in N$. That is, for all $i \in N$,

$$v_i(\sigma_i^*, \sigma_{-i}^*) \geq v_i(\sigma_i, \sigma_{-i}^*) \quad \forall \sigma_i \in \Delta S_i.$$

Proposition 6.1 Given $\sigma_i \in \Delta S_i$, denote

$S_i^+(\sigma_i) = \{s_i \in S_i | \sigma_i(s_i) > 0\}$ (the set of the support of σ_i^*). A mixed strategy profile σ is a Nash equilibrium if and only if $\forall i \in N$

- (i) $\forall s_i \in S_i^+(\sigma_i), \forall \hat{s}_i \in S_i^+(\sigma_i), v_i(s_i, \sigma_{-i}) = v_i(\hat{s}_i, \sigma_{-i}),$
- (ii) $\forall s_i \in S_i^+(\sigma_i), \forall \hat{s}_i \notin S_i^+(\sigma_i), v_i(s_i, \sigma_{-i}) \geq v_i(\hat{s}_i, \sigma_{-i}).$

Section 6.2

Proposition 6.1 Given $\sigma_i \in \Delta S_i$, denote

$S_i^+(\sigma_i) = \{s_i \in S_i | \sigma_i(s_i) > 0\}$. A mixed strategy profile σ is a Nash equilibrium if and only if $\forall i \in N$

- (i) $\forall s_i \in S_i^+(\sigma_i), \forall \hat{s}_i \in S_i^+(\sigma_i), v_i(s_i, \sigma_{-i}) = v_i(\hat{s}_i, \sigma_{-i}),$
- (ii) $\forall s_i \in S_i^+(\sigma_i), \forall \hat{s}_i \notin S_i^+(\sigma_i), v_i(s_i, \sigma_{-i}) \geq v_i(\hat{s}_i, \sigma_{-i}).$

Proof (rough sketch) “only if part”: if either (i) or (ii) does not hold for some i , there are strategies $s_i \in S_i^+$ and $s'_i \in S_i$ such that $v_i(s'_i, \sigma_{-i}) > v_i(s_i, \sigma_{-i})$.

Section 6.2

Proposition 6.1 Given $\sigma_i \in \Delta S_i$, denote

$S_i^+(\sigma_i) = \{s_i \in S_i | \sigma_i(s_i) > 0\}$. A mixed strategy profile σ is a Nash equilibrium if and only if $\forall i \in N$

- (i) $\forall s_i \in S_i^+(\sigma_i), \forall \hat{s}_i \in S_i^+(\sigma_i), v_i(s_i, \sigma_{-i}) = v_i(\hat{s}_i, \sigma_{-i}),$
- (ii) $\forall s_i \in S_i^+(\sigma_i), \forall \hat{s}_i \notin S_i^+(\sigma_i), v_i(s_i, \sigma_{-i}) \geq v_i(\hat{s}_i, \sigma_{-i}).$

Proof (rough sketch) “if part”: Suppose that (i) and (ii) hold but σ is not a Nash equilibrium. There is some i who has a strategy σ'_i with $v_i(\sigma'_i, \sigma_{-i}) > v_i(\sigma_i, \sigma_{-i})$. For some pure strategy s'_i with $\sigma'_i(s'_i) > 0$,
 $v_i(s'_i, \sigma_{-i}) > v_i(\sigma_i, \sigma_{-i})$.

Example (1)

All-pay-auction There are two players who can bid for a dollar. Each can set a bid that is on the interval $[0, 1]$, that is, $S_i = [0, 1]$. The players need to pay their bids, s_1 and s_2 , **regardless of the bidding outcome**.

Example (1)

All-pay-auction There are two players who can bid for a dollar. $S_i = [0, 1]$. The players need to pay their bids, s_1 and s_2 , **regardless of the bidding outcome**.

The person with the higher bid gets the dollar. If there is a tie, the dollar is awarded to each with prob 1/2.

The payoff of player i is

$$v_i(s_i, s_{-i}) = \begin{cases} -s_i & \text{if } s_i < s_j \\ 1/2 - s_i & \text{if } s_i = s_j \\ 1 - s_i & \text{if } s_i > s_j. \end{cases}$$

(1) Show that there is no pure strategy Nash equilibrium.

Example (1)

All-pay-auction There are two players who can bid for a dollar. $S_i = [0, 1]$. The players need to pay their bids, s_1 and s_2 , **regardless of the bidding outcome**.

The payoff of player i is

$$v_i(s_i, s_{-i}) = \begin{cases} -s_i & \text{if } s_i < s_j \\ 1/2 - s_i & \text{if } s_i = s_j \\ 1 - s_i & \text{if } s_i > s_j. \end{cases}$$

(2) Show that the following is a Nash equilibrium:

$$F_i(s_i) = s_i \text{ for } s_i \in [0, 1] \ (i = 1, 2).$$

Page 107 in Tadelis shows that $v_i(s_i, \sigma_j) = 0 \ \forall s_i \in [0, 1]$.

Example (2)

Matching Pennies No pure strategy Nash equilibrium.

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

Consider the following mixed strategy profile:

$$\sigma = (\sigma_1(H), \sigma_1(T), \sigma_2(H), \sigma_2(T)) = (p, 1-p, q, 1-q).$$

Example (2)

Matching Pennies No pure strategy Nash equilibrium.

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

$$\sigma = (\sigma_1(H), \sigma_1(T), \sigma_2(H), \sigma_2(T)) = (p, 1-p, q, 1-q).$$

Player 1's expected payoff for each pure strategy

$$v_1(H, \sigma_2) = q \times 1 + (1-q) \times (-1) = 2q - 1,$$

$$v_1(T, \sigma_2) = q \times (-1) + (1-q) \times 1 = 1 - 2q,$$

Example (2)

Matching Pennies No pure strategy Nash equilibrium.

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

$$\sigma = (\sigma_1(H), \sigma_1(T), \sigma_2(H), \sigma_2(T)) = (p, 1-p, q, 1-q).$$

Player 1's expected payoff for each pure strategy

$$v_1(H, \sigma_2) = q \times 1 + (1-q) \times (-1) = 2q - 1,$$

$$v_1(T, \sigma_2) = q \times (-1) + (1-q) \times 1 = 1 - 2q,$$

Playing H (T) is strictly better iff $q > 1/2$ ($q < 1/2$).

Each of them is indifferent iff $q = 1/2$.

Example (2)

Matching Pennies No pure strategy Nash equilibrium.

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

$$\sigma = (\sigma_1(H), \sigma_1(T), \sigma_2(H), \sigma_2(T)) = (p, 1-p, q, 1-q).$$

Playing H (T) is strictly better iff $q > 1/2$ ($q < 1/2$).
Each of them is indifferent iff $q = 1/2$.

The best-response correspondence of player 1

$$BR_1(q) = \begin{cases} p = 0 & \text{if } q < 1/2 \\ p \in [0, 1] & \text{if } q = 1/2 \\ p = 1 & \text{if } q > 1/2. \end{cases}$$

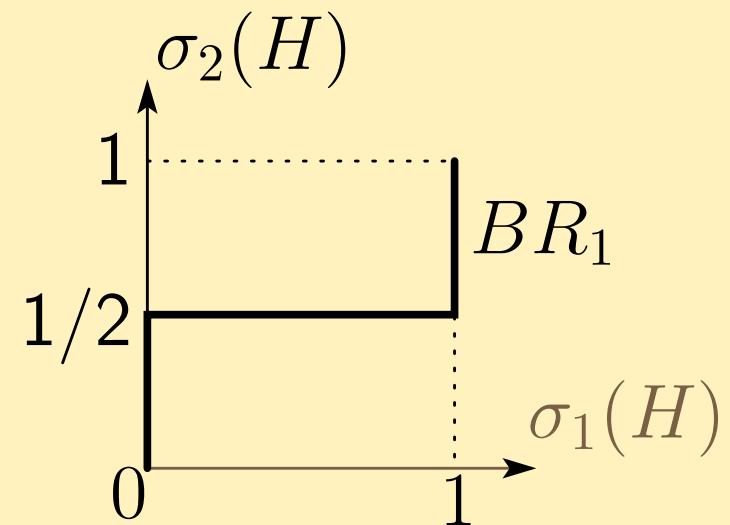
Example (2)

Matching Pennies No pure strategy Nash equilibrium.

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

$$\sigma = (\sigma_1(H), \sigma_1(T), \sigma_2(H), \sigma_2(T)) = (p, 1-p, q, 1-q).$$

$$BR_1(q) = \begin{cases} p = 0 & \text{if } q < 1/2 \\ p \in [0, 1] & \text{if } q = 1/2 \\ p = 1 & \text{if } q > 1/2. \end{cases}$$



Example (2)

Matching Pennies No pure strategy Nash equilibrium.

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

$$\sigma = (\sigma_1(H), \sigma_1(T), \sigma_2(H), \sigma_2(T)) = (p, 1-p, q, 1-q).$$

$$BR_1(q) = \begin{cases} p = 0 & \text{if } q < 1/2 \\ p \in [0, 1] & \text{if } q = 1/2 \\ p = 1 & \text{if } q > 1/2. \end{cases}$$

$$BR_2(p) = \begin{cases} q = 1 & \text{if } p < 1/2 \\ q \in [0, 1] & \text{if } p = 1/2 \\ q = 0 & \text{if } p > 1/2. \end{cases}$$

Example (2)

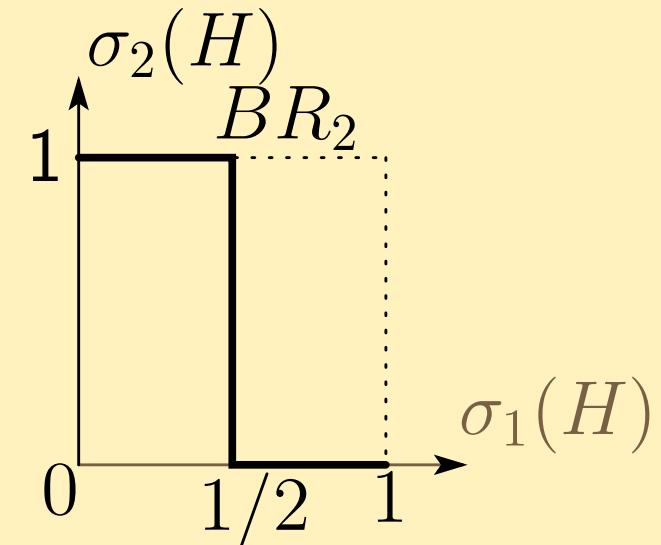
Matching Pennies No pure strategy Nash equilibrium.

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

$$\sigma = (\sigma_1(H), \sigma_1(T), \sigma_2(H), \sigma_2(T)) = (p, 1-p, q, 1-q).$$

$$BR_1(q) = \begin{cases} p = 0 & \text{if } q < 1/2 \\ p \in [0, 1] & \text{if } q = 1/2 \\ p = 1 & \text{if } q > 1/2. \end{cases}$$

$$BR_2(p) = \begin{cases} q = 1 & \text{if } p < 1/2 \\ q \in [0, 1] & \text{if } p = 1/2 \\ q = 0 & \text{if } p > 1/2. \end{cases}$$



Example (2)

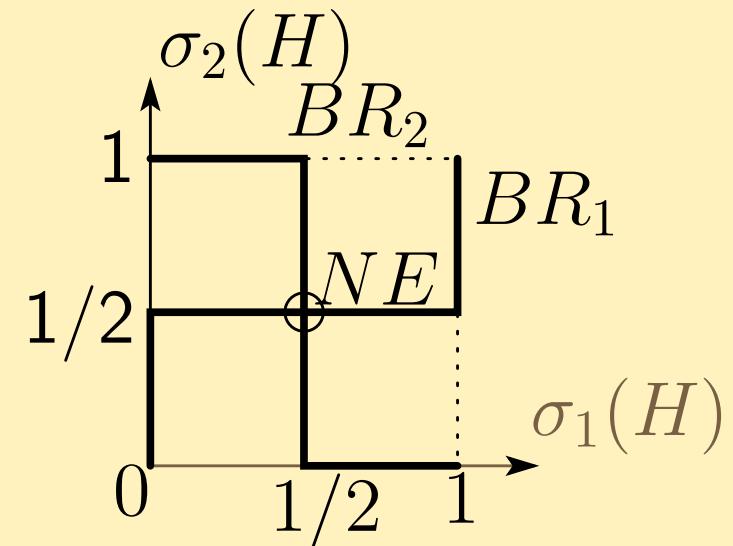
Matching Pennies No pure strategy Nash equilibrium.

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

$$\sigma = (\sigma_1(H), \sigma_1(T), \sigma_2(H), \sigma_2(T)) = (p, 1-p, q, 1-q).$$

$$BR_1(q) = \begin{cases} p = 0 & \text{if } q < 1/2 \\ p \in [0, 1] & \text{if } q = 1/2 \\ p = 1 & \text{if } q > 1/2. \end{cases}$$

$$BR_2(p) = \begin{cases} q = 1 & \text{if } p < 1/2 \\ q \in [0, 1] & \text{if } p = 1/2 \\ q = 0 & \text{if } p > 1/2. \end{cases}$$



Example (2)

Matching Pennies No pure strategy Nash equilibrium.

$1/2$	H	T
H	$1, -1$	$-1, 1$
T	$-1, 1$	$1, -1$

- If a player is mixing several strategies, he must be *indifferent between them*.
- In the Matching Pennies game, we check *which strategy of player 2* will make *player 1* indifferent between playing H and T .

Example (3)

Rock-paper-Scissors No pure strategy Nash equilibrium.

$1/2$	R	P	S
R	$0, 0$	$-1, 1$	$1, -1$
P	$1, -1$	$0, 0$	$-1, 1$
S	$-1, 1$	$1, -1$	$0, 0$

Example (3)

Rock-paper-Scissors No pure strategy Nash equilibrium.

$1/2$	R	P	S
R	0, 0	-1, 1	1, -1
P	1, -1	0, 0	-1, 1
S	-1, 1	1, -1	0, 0

No Nash eq. where one player plays a pure strategy and the other mixes.

Example (3)

Rock-paper-Scissors No pure strategy Nash equilibrium.

$1/2$	R	P	S
R	$0, 0$	$-1, 1$	$1, -1$
P	$1, -1$	$0, 0$	$-1, 1$
S	$-1, 1$	$1, -1$	$0, 0$

No Nash eq. where at least one player mixes only two of the pure strategies.

By symmetry, suppose that player i mixes only R and P . Given this, $P \succ_j R$, which induces player j not to play R with a positive prob.. Given this response by player j , $S \succ_i P$, which changes the initially assumed strategy of player i . A contradiction.

Example (3)

Rock-paper-Scissors No pure strategy Nash equilibrium.

$1/2$	R	P	S
R	$0, 0$	$-1, 1$	$1, -1$
P	$1, -1$	$0, 0$	$-1, 1$
S	$-1, 1$	$1, -1$	$0, 0$

Each player must mix the three strategies.

Suppose that player i 's mixed strategy is

$$\sigma_i = (\sigma_i(R), \sigma_i(P), 1 - \sigma_i(R) - \sigma_i(P)).$$

Example (3)

Rock-paper-Scissors No pure strategy Nash equilibrium.

$1/2$	R	P	S
R	$0, 0$	$-1, 1$	$1, -1$
P	$1, -1$	$0, 0$	$-1, 1$
S	$-1, 1$	$1, -1$	$0, 0$

Each player must mix the three strategies.

Suppose that player i 's mixed strategy is

$$\sigma_i = (\sigma_i(R), \sigma_i(P), 1 - \sigma_i(R) - \sigma_i(P)).$$

$$v_j(R, \sigma_i) = 1 - \sigma_i(R) - 2\sigma_i(P),$$

$$v_j(P, \sigma_i) = -1 + 2\sigma_i(R) + \sigma_i(P).$$

$$v_j(S, \sigma_i) = -\sigma_i(R) + \sigma_i(P).$$

Example (3)

Rock-paper-Scissors No pure strategy Nash equilibrium.

$1/2$	R	P	S
R	$0, 0$	$-1, 1$	$1, -1$
P	$1, -1$	$0, 0$	$-1, 1$
S	$-1, 1$	$1, -1$	$0, 0$

Each player must mix the three strategies.

Suppose that player i 's mixed strategy is

$$\sigma_i = (\sigma_i(R), \sigma_i(P), 1 - \sigma_i(R) - \sigma_i(P)).$$

$$v_j(R, \sigma_i) = 1 - \sigma_i(R) - 2\sigma_i(P),$$

$$v_j(P, \sigma_i) = -1 + 2\sigma_i(R) + \sigma_i(P).$$

$$v_j(S, \sigma_i) = -\sigma_i(R) + \sigma_i(P).$$

If $v_j(R, \sigma_i) = v_j(P, \sigma_i) = v_j(S, \sigma_i)$, player j mixes R , P , and S .

Example (4)

Bertrand competition (Kwong, 2003, CJE) Two firms with identical constant marginal cost c exist.

Example (4)

Bertrand competition (Kwong, 2003, CJE) Two firms with identical constant marginal cost c exist.

Consumers Type i loyal consumers buy only product i iff $p_i \leq r$ (r is their reservation price). The mass is L .

Example (4)

Bertrand competition (Kwong, 2003, CJE) Two firms with identical constant marginal cost c exist.

Consumers Type i loyal consumers buy only product i iff $p_i \leq r$ (r is their reservation price). The mass is L . Type 0 consumers buy a product with the lowest price, if which is not larger than r . The mass is M .

Example (4)

Consumers Type i loyal consumers buy only product i iff $p_i \leq r$ (r is their reservation price). The mass is L . Type 0 consumers buy a product with the lowest price, if which is not larger than r . The mass is M .

Profits The profit of firm i is given by ($i = 1, 2$)

$$\Pi^i(p_i, p_j) = \begin{cases} (p_i - c)(M + L) & \text{if } p_i < p_j, \\ (p_i - c)(M/2 + L) & \text{if } p_i = p_j, \\ (p_i - c)L & \text{if } p_i > p_j. \end{cases}$$

Example (4)

Profits The profit of firm i is given by ($i = 1, 2$)

$$\Pi^i(p_i, p_j) = \begin{cases} (p_i - c)(M + L) & \text{if } p_i < p_j, \\ (p_i - c)(M/2 + L) & \text{if } p_i = p_j, \\ (p_i - c)L & \text{if } p_i > p_j. \end{cases}$$

Mixed strategy Firm i randomizes p_i according to some distribution function $F_i(p_i)$. Assume that F_i is continuously differentiable and that f_i denotes the density function.

Example (4)

Profits The profit of firm i is given by ($i = 1, 2$)

$$\Pi^i(p_i, p_j) = \begin{cases} (p_i - c)(M + L) & \text{if } p_i < p_j, \\ (p_i - c)(M/2 + L) & \text{if } p_i = p_j, \\ (p_i - c)L & \text{if } p_i > p_j. \end{cases}$$

Mixed strategy Firm i randomizes p_i according to some distribution function $F_i(p_i)$.

Prove that the support of the price density is given by $[\underline{p}, r]$.

Example (4)

Mixed strategy Firm i randomizes p_i according to some distribution function $F_i(p_i)$.

Prove that the support of the price density is given by $[\underline{p}, r]$.

- For any $p_i(> r)$, firm i earns no profit.

Example (4)

Mixed strategy Firm i randomizes p_i according to some distribution function $F_i(p_i)$.

Prove that the support of the price density is given by $[\underline{p}, r]$.

- For any $p_i(> r)$, firm i earns no profit.
- Each firm can earn a profit at least $(r - c)L$.

Example (4)

Mixed strategy Firm i randomizes p_i according to some distribution function $F_i(p_i)$.

Prove that the support of the price density is given by $[\underline{p}, r]$.

- For any $p_i(> r)$, firm i earns no profit.
- Each firm can earn a profit at least $(r - c)L$.
- A critical price below which it is unprofitable to price.

Example (4)

Mixed strategy Firm i randomizes p_i according to some distribution function $F_i(p_i)$.

Prove that the support of the price density is given by $[\underline{p}, r]$.

- For any $p_i(> r)$, firm i earns no profit.
- Each firm can earn a profit at least $(r - c)L$.
- A critical price below which it is unprofitable to price. This critical price, \underline{p} , is derived by the equation, $(p - c)(M + L) = \overline{(r - c)L}$.

Example (4)

Mixed strategy Firm i randomizes p_i according to some distribution function $F_i(p_i)$.
The expected profit of firm i is given as

$$\int_{\underline{p}}^r [(1 - F_j(p_i)) (p_i - c)(M + L) + F_j(p_i)(p_i - c)L] f_i(p_i) dp_i,$$

Solution Applying Proposition 6.1, we have the following equation:

$$(1 - F_j(p_i)) (p_i - c)(M + L) + F_j(p_i)(p_i - c)L = (r - c)L.$$

Example (4)

Mixed strategy Firm i randomizes p_i according to some distribution function $F_i(p_i)$.
The expected profit of firm i is given as

$$\int_{\underline{p}}^r [(1 - F_j(p_i)) (p_i - c)(M + L) + F_j(p_i)(p_i - c)L] f_i(p_i) dp_i,$$

Solution Applying Proposition 6.1, we have the following equation:

$$(1 - F_j(p_i)) (p_i - c)(M + L) + F_j(p_i)(p_i - c)L = (r - c)L.$$

Solving the equation with respect to F , we have

$$F_i(p_i) = 1 - \frac{(r - p_i)L}{(p_i - c)M}.$$

Example (4)

Mixed strategy Firm i randomizes p_i according to some distribution function $F_i(p_i)$.
The expected profit of firm i is given as

$$\int_{\underline{p}}^r [(1 - F_j(p_i)) (p_i - c)(M + L) + F_j(p_i)(p_i - c)L] f_i(p_i) dp_i,$$

Solution Applying Proposition 6.1, we have the following equation:

$$(1 - F_j(p_i)) (p_i - c)(M + L) + F_j(p_i)(p_i - c)L = (r - c)L.$$

Solving the equation with respect to F , we have

$$F_i(p_i) = 1 - \frac{(r - p_i)L}{(p_i - c)M}.$$

A related paper (Baye and Morgan, 2001, AER).

Section 6.4

Proposition Every game $\Gamma = [N, \{\Delta S_i\}, \{v_i\}]$ in which the sets S_1, \dots, S_n have a finite number of elements has a mixed strategy Nash equilibrium.

Proposition A Nash equilibrium exists in game $\Gamma = [N, \{S_i\}, \{v_i\}]$ if $\forall i \in N$,

1. S_i is a nonempty, convex, and compact subset of some Euclidean space \mathbb{R}^M .
2. $v_i(s_1, \dots, s_n)$ is continuous in (s_1, \dots, s_n) and quasi-concave in s_i .