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Finitely repeated game (def.) Given a stage game G,
let G(T, δ) denote the finitely repeated game in which the
stage-game G is played T consecutive times, and δ is the
common discount factor.
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Example (p.191) A two-stage repeated game. The
discount factor is δ. M2 F2 R2

M1 4,4 -1,5 0,0
Fi 5,-1 1,1 0,0
Ri 0,0 0,0 3,3



Finitely repeated games

3 / 14

Example (p.191) A two-stage repeated game. The
discount factor is δ. M2 F2 R2

M1 4,4 -1,5 0,0
Fi 5,-1 1,1 0,0
Ri 0,0 0,0 3,3

There can be a subgame-perfect outcome of this repeated
game in which (M,m) is played in the first stage (if
δ ≥ 1/2).
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Example (p.191) A two-stage repeated game. The
discount factor is δ. M2 F2 R2

M1 4,4 -1,5 0,0
Fi 5,-1 1,1 0,0
Ri 0,0 0,0 3,3

Player i’s strategy: Play Mi in stage 1. In stage 2, play
Ri if (M1,M2) was played in stage 1, and play Fi if anything
but (M1,M2) was played in stage 1.
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Example (p.191) A two-stage repeated game. The
discount factor is δ. M2 F2 R2

M1 4,4 -1,5 0,0
Fi 5,-1 1,1 0,0
Ri 0,0 0,0 3,3

Player i’s strategy: Play Mi in stage 1. In stage 2, play
Ri if (M1,M2) was played in stage 1, and play Fi if anything
but (M1,M2) was played in stage 1.

(i) Check the strategy in each 2nd stage game (subgame).
(ii) Check the incentive of player i not to deviate from Mi.

In stage 1, play Mi: 4 + 3δ, play Fi: 5 + δ.
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Infinitely repeated games The following Prisoners’
Dilemma is to be repeated infinitely.

L2 R2

L1 1,1 5,0
R1 0,5 4,4

δ: the discount factor, which rep-
resents the value today of a dollar
to be received one period later.

Present value Given the discount factor δ, the present
value of the infinite sequence of payoffs {vi,t}∞t=1 for player i
is

vi,1 + δvi,2 + δ2vi,3 + · · · =
∞∑
t=1

δt−1vi,t.
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Infinitely repeated games The following Prisoners’
Dilemma is to be repeated infinitely.

L2 R2

L1 1,1 5,0
R1 0,5 4,4

δ: the discount factor, which rep-
resents the value today of a dollar
to be received one period later.

Average payoff Given the discount factor δ, the average
payoff of the infinite sequence of payoffs {vi,t}∞t=1 is

v̄i = (1− δ)
∞∑
t=1

δt−1vi,t.

Consider a case in which player i gets y in each period, and
the chance continues forever.
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Infinitely repeated games The following Prisoners’
Dilemma is to be repeated infinitely.

L2 R2

L1 1,1 5,0
R1 0,5 4,4

δ: the discount factor, which rep-
resents the value today of a dollar
to be received one period later.

Average payoff Given the discount factor δ, the average
payoff of the infinite sequence of payoffs {vi,t}∞t=1 is

v̄i = (1− δ)
∞∑
t=1

δt−1vi,t.

The present value of his payoff is V = y/(1− δ). The
average payoff is y, which is equal to (1− δ)V .
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A (trigger) strategy Play Ri in period 1. In period t, if
the outcome of all t− 1 preceding stages has been
(R1, R2) then play Ri; otherwise, play Li.

L2 R2

L1 1,1 5,0
R1 0,5 4,4
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A (trigger) strategy Play Ri in period 1. In period t, if
the outcome of all t− 1 preceding stages has been
(R1, R2) then play Ri; otherwise, play Li.

L2 R2

L1 1,1 5,0
R1 0,5 4,4

Play Li: yields 5 in this stage; (L1, L2) forever.

5 + δ · 1 + δ2 · 1 + · · · = 5 + δ/(1− δ).
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A (trigger) strategy Play Ri in period 1. In period t, if
the outcome of all t− 1 preceding stages has been
(R1, R2) then play Ri; otherwise, play Li.

L2 R2

L1 1,1 5,0
R1 0,5 4,4

Play Li: yields 5 in this stage; (L1, L2) forever.

5 + δ · 1 + δ2 · 1 + · · · = 5 + δ/(1− δ).

Play Ri: yields 4 in this stage; the same situation.

V = 4 + δV → V = 4/(1− δ).
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Infinitely repeated game (def.) Given a stage game G,
let G(∞, δ) denote the infinitely repeated game in which
G is repeated forever and the players share the discount
factor δ.
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Infinitely repeated game (def.) Given a stage game G,
let G(∞, δ) denote the infinitely repeated game in which
G is repeated forever and the players share the discount
factor δ. For each t, the outcomes of the t− 1 preceding
plays of the stage game are observed before the stage t

begins.
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Infinitely repeated game (def.) Given a stage game G,
let G(∞, δ) denote the infinitely repeated game in which
G is repeated forever and the players share the discount
factor δ. For each t, the outcomes of the t− 1 preceding
plays of the stage game are observed before the stage t

begins. Each player’s payoff in G(∞, δ) is the present
value of the player’s payoffs from the infinite sequence of
stage games.
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Strategy (def.) Consider an infinitely repeated game.
Let Ht denote the set of all possible histories of length t,
ht ∈ Ht, and let H = ∪∞

t=1Ht be the set of all possible
histories (the union over t of all the sets Ht). A pure
strategy for player i is a mapping si : H → Si that maps
histories into actions of the stage-game. A behavioral
strategy of player i, σi : H → ΔSi maps histories into
stochastic choices of actions in each stage.
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Let Ht denote the set of all possible histories of length t,
ht ∈ Ht, and let H = ∪∞

t=1Ht be the set of all possible
histories (the union over t of all the sets Ht). A pure
strategy for player i is a mapping si : H → Si that maps
histories into actions of the stage-game. A behavioral
strategy of player i, σi : H → ΔSi maps histories into
stochastic choices of actions in each stage.

Subgame (def.) In a finitely repeated game G(T, δ), a
subgame beginning at stage t+ 1 is the repeated game in
which G is played T − t times, denoted G(T − t, δ).
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Strategy (def.) A pure strategy for player i is a
mapping si : H → Si that maps histories into actions of
the stage-game. A behavioral strategy of player i,
σi : H → ΔSi maps histories into stochastic choices of
actions in each stage.

Subgame (def.) In a finitely repeated game G(T, δ), a
subgame beginning at stage t+ 1 is the repeated game in
which G is played T − t times, denoted G(T − t, δ).

There are many subgames that begin at stage t+ 1, one
for each of the possible histories of play through stage t.
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Strategy (def.) A pure strategy for player i is a
mapping si : H → Si that maps histories into actions of
the stage-game. A behavioral strategy of player i,
σi : H → ΔSi maps histories into stochastic choices of
actions in each stage.

Subgame (def.) In a infinitely repeated game G(∞, δ),
each subgame beginning at stage t+ 1 is identical to the
original game G(∞, δ).
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Strategy (def.) A pure strategy for player i is a
mapping si : H → Si that maps histories into actions of
the stage-game. A behavioral strategy of player i,
σi : H → ΔSi maps histories into stochastic choices of
actions in each stage.

Subgame (def.) In a infinitely repeated game G(∞, δ),
each subgame beginning at stage t+ 1 is identical to the
original game G(∞, δ).

There are as many subgames beginning at stage t+ 1 of
G(∞, δ) as there are possible histories of play through
stage t.
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Def 10.5 A profile of pure strategies
(s∗1(·), s∗2(·), · · · , s∗n(·)), si : H → Si for all i ∈ N , is a
subgame-perfect equilibrium if the restriction of
(s∗1(·), s∗2(·), · · · , s∗n(·)) is a Nash equilibrium in every
subgame.
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Def 10.5 A profile of pure strategies
(s∗1(·), s∗2(·), · · · , s∗n(·)), si : H → Si for all i ∈ N , is a
subgame-perfect equilibrium if the restriction of
(s∗1(·), s∗2(·), · · · , s∗n(·)) is a Nash equilibrium in every
subgame.

Prop. 10.2 Let G(∞, δ) be an infinetely repeated game,
and let (σ∗

1, σ
∗
2, . . . , σ

∗
n) be a (static) Nash equilibrium

strategy profile of the stage-game G. Define the
repeated-game strategy for each player i to be the
history-independent Nash strategy, σ∗

i (h) = σ∗
i for all

h ∈ H. Then, (σ∗
1(h), σ

∗
2(h), . . . , σ

∗
n(h)) is a

subgame-perfect equilibrium in the repeated game for any
δ < 1.
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Def 10.5 A profile of pure strategies
(s∗1(·), s∗2(·), · · · , s∗n(·)), si : H → Si for all i ∈ N , is a
subgame-perfect equilibrium if the restriction of
(s∗1(·), s∗2(·), · · · , s∗n(·)) is a Nash equilibrium in every
subgame.

Prop. 10.3 In an infinitely repeated game G(∞, δ), a
strategy profile σ∗ = (σ∗

1, σ
∗
2, . . . , σ

∗
n) is a subgame-perfect

equilibrium if and only if there is no player i and no single
history ht−1 for which player i would gain from deviating
from si(ht−1).

See the supplemental material related to Section 9.5
(one-stage deviation principle).
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Trigger-strategy We must show that the trigger
strategies constitute a Nash equilibrium on every subgame
of that infinitely repeated game.

L2 R2

L1 1,1 5,0
R1 0,5 4,4
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Trigger-strategy Play Ri in period 1. In period t, if the
outcome of all t− 1 preceding stages has been (R1, R2)
then play Ri; otherwise, play Li.

L2 R2

L1 1,1 5,0
R1 0,5 4,4

1. subgames in which all the outcomes of earlier stages
have been (R1, R2).
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Trigger-strategy Play Ri in period 1. In period t, if the
outcome of all t− 1 preceding stages has been (R1, R2)
then play Ri; otherwise, play Li.

L2 R2

L1 1,1 5,0
R1 0,5 4,4

1. subgames in which all the outcomes of earlier stages
have been (R1, R2).

2. subgames in which the outcome of at least one earlier
stage differs from (R1, R2).
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Def. 10.6 Consider two vectors v = (v1, v2, . . . , vn) and
v′ = (v′1, v

′
2, . . . , v

′
n) in 	n. The vector v̂ = (v̂1, v̂2, . . . , v̂n)

is a convex conbination of v and v′ if there exists some
number α ∈ [0, 1] such that

v̂ = αv + (1− α)v′,
or v̂i = αvi + (1− α)v′i for all i ∈ {1, 2, · · · , n}.
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Def. 10.6 Consider two vectors v = (v1, v2, . . . , vn) and
v′ = (v′1, v

′
2, . . . , v

′
n) in 	n. The vector v̂ = (v̂1, v̂2, . . . , v̂n)

is a convex conbination of v and v′ if there exists some
number α ∈ [0, 1] such that

v̂ = αv + (1− α)v′,
or v̂i = αvi + (1− α)v′i for all i ∈ {1, 2, · · · , n}.

Def. 10.7 Given a set of vectors V = {v1, v2, · · · , vk} in
	n, the convext hull of V is the smallest convex set that
contains all the vectors in V .
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Def. 10.6 Consider two vectors v = (v1, v2, . . . , vn) and
v′ = (v′1, v

′
2, . . . , v

′
n) in 	n. The vector v̂ = (v̂1, v̂2, . . . , v̂n)

is a convex conbination of v and v′ if there exists some
number α ∈ [0, 1] such that

v̂ = αv + (1− α)v′,
or v̂i = αvi + (1− α)v′i for all i ∈ {1, 2, · · · , n}.

Def. 10.7 Given a set of vectors V = {v1, v2, · · · , vk} in
	n, the convext hull of V is

CoHull(V )

={v ∈ 	n : ∃(α1, · · · , αk) ∈ 	k,
k∑

j=1

αj = 1, such that v =
k∑

j=1

αjv
j}.



The Folk Theorem

11 / 14

Feasible The payoffs (x1, . . . , xN) are feasible in the
stage game G if they are a convex combination of the
pure-strategy payoffs of G.

L2 R2

L1 1,1 5,0
R1 0,5 4,4

0

(1,1)

(4,4)

5

5

P1

P2
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Theorem 10.1 (Friedman 1971) Let G be a finite,
static game of complete information. Let (e1, . . . , en)
denote the payoffs from a Nash equilibrium of G, and let
(x1, . . . , xn) denote any other feasible payoffs from G.
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Theorem 10.1 (Friedman 1971) Let G be a finite,
static game of complete information. Let (e1, . . . , en)
denote the payoffs from a Nash equilibrium of G, and let
(x1, . . . , xn) denote any other feasible payoffs from G. If
xi > ei for every player i and if δ is sufficiently close to
one, then there exists a subgame-perfect Nash equilibrium
of the infinitely repeated game G(∞, δ) that achieves
(x1, . . . , xn) as the average payoff.

0

(1,1)

(4,4)

5

5
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Collusion Q = q1 + q2, P = a−Q, MC = c.

NE: qC = (a− c)/3 Monopoly: qm = (a− c)/2.

NE: πC = (a− c)2/9 Collusion: πm/2 = (a− c)2/8.
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NE: qC = (a− c)/3 Monopoly: qm = (a− c)/2.

NE: πC = (a− c)2/9 Collusion: πm/2 = (a− c)2/8.

Trigger strategy In period 1, produce qm/2. In period t,
produce qm/2 if they have produced qm/2 in each of the
t− 1 previous periods; otherwise, produce qC .
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Collusion Q = q1 + q2, P = a−Q, MC = c.

NE: qC = (a− c)/3 Monopoly: qm = (a− c)/2.

NE: πC = (a− c)2/9 Collusion: πm/2 = (a− c)2/8.

Trigger strategy In period 1, produce qm/2. In period t,
produce qm/2 if they have produced qm/2 in each of the
t− 1 previous periods; otherwise, produce qC .

Deviation Given the rival produces qm/2, the optimal
quantity to deviate is

argmax
qj

(
a− qj − qm

2
− c

)
qj → qj =

3(a− c)

8
.

The profit of the deviating firm is πd = 9(a− c)2/64.
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πC = (a− c)2/9, πm/2 = (a− c)2/8, πd = 9(a− c)2/64.

Trigger strategy In period 1, produce qm/2. In period t,
produce qm/2 if they have produced qm/2 in each of the
t− 1 previous periods; otherwise, produce qC .

Cooperation The firms play the trigger strategy if
1

1− δ

πm
2

≥ πd +
δ

1− δ
πC → δ ≥ 9

17
.
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πC = (a− c)2/9, πm/2 = (a− c)2/8, πd = 9(a− c)2/64.

Trigger strategy In period 1, produce qm/2. In period t,
produce qm/2 if they have produced qm/2 in each of the
t− 1 previous periods; otherwise, produce qC .

Cooperation The firms play the trigger strategy if
1

1− δ

πm
2

≥ πd +
δ

1− δ
πC → δ ≥ 9

17
.

If δ < 9/17: The following trigger strategy is useful.
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πC = (a− c)2/9, πm/2 = (a− c)2/8, πd = 9(a− c)2/64.

Trigger strategy In period 1, produce qm/2. In period t,
produce qm/2 if they have produced qm/2 in each of the
t− 1 previous periods; otherwise, produce qC .

Cooperation The firms play the trigger strategy if
1

1− δ

πm
2

≥ πd +
δ

1− δ
πC → δ ≥ 9

17
.

If δ < 9/17: The following trigger strategy is useful.

In period 1, produce q∗. In period t, produce q∗ if they
have produced q∗ in each of the t− 1 previous periods;
otherwise, produce qC . (qm/2 < q∗ < qC)
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