

**Chapter §9.C in MWG: Beliefs and
Sequential Rationality**

**Chapter 15 in Tadelis: Sequential
Rationality with Incomplete Information**

- The problem with subgame perfection
- Perfect Bayesian Equilibrium
- Sequential Equilibrium

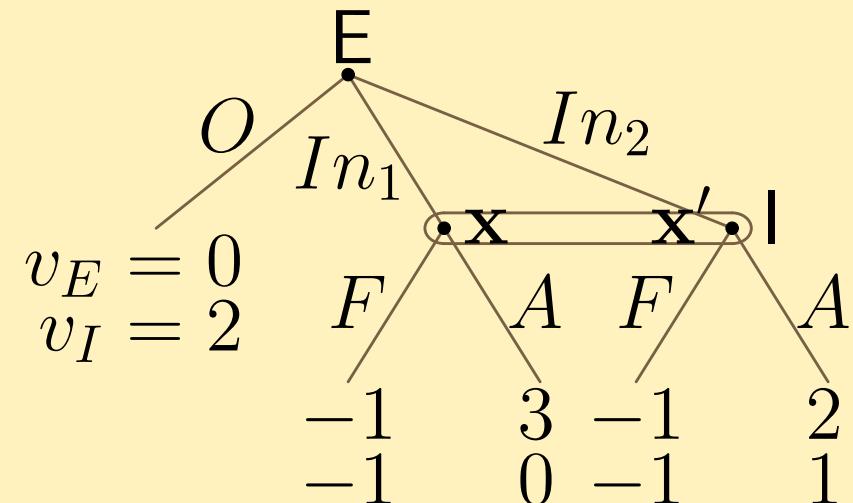
Beliefs and Sequential Rationality

15.1 The problem with subgame perfection

§9.C Beliefs and Sequential Rationality

Example 9.C.1 No subgame except for the whole game.

E/I	F	A
O	0, 2	0, 2
In ₁	-1, -1	3, 0
In ₂	-1, -1	2, 1



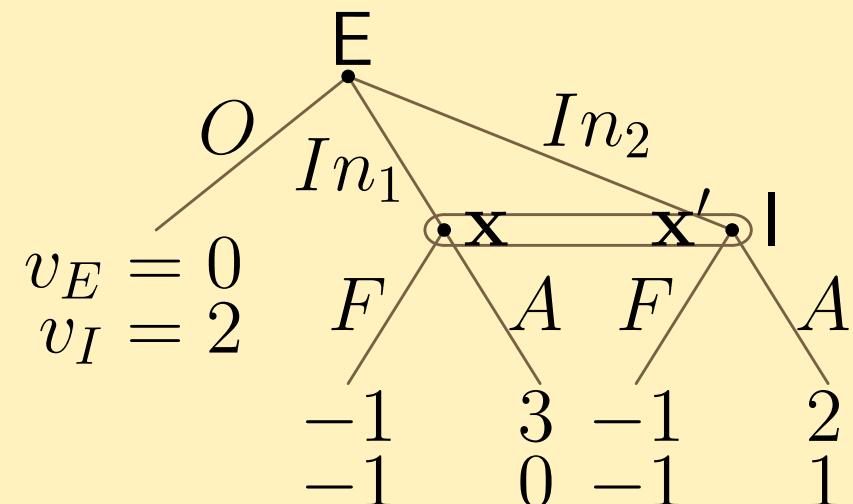
There are two subgame perfect Nash equilibria.

Beliefs and Sequential Rationality

§9.C Beliefs and Sequential Rationality

Example 9.C.1 No subgame except for the whole game.

E/I	F	A
O	0, 2	0, 2
In ₁	-1, -1	3, 0
In ₂	-1, -1	2, 1



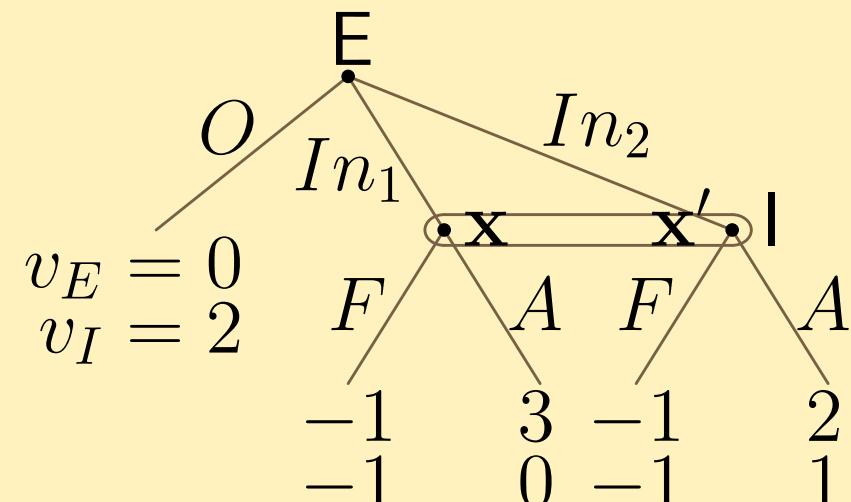
There are two subgame perfect Nash equilibria. However, once player E enters, whether plays *In*₁ or *In*₂, it is optimal for player I to play *A*.

Beliefs and Sequential Rationality

§9.C Beliefs and Sequential Rationality

Example 9.C.1 No subgame except for the whole game.

E/I	F	A
O	0, 2	0, 2
In ₁	-1, -1	3, 0
In ₂	-1, -1	2, 1



There are two subgame perfect Nash equilibria. However, once player E enters, whether plays *In*₁ or *In*₂, it is optimal for player I to play *A*. Thus, (O, *F*) is NOT consistent with the spirit of sequential rationality.

15.2 Perfect Bayesian Equilibrium

Definition 15.1 Let $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$ be a Bayesian Nash equilibrium profile of strategies in a game of incomplete information.

An information set is **on the equilibrium path** if given σ^* and the distribution of types, it is reached *with positive probability*.

An information set is **off the equilibrium path** if given σ^* and the distribution of types, it is reached *with zero probability*.

As in Chapter 7, we define the two concepts here.

Beliefs and Sequential Rationality

Definition 15.2 A **system of beliefs** μ of an extensive-form game assigns a probability distribution over decision nodes to every information set.

That is, for every information set $h \in H$ and every decision node $x \in h$, $\mu(x) \in [0, 1]$ is the probability that player i who moves in information set h assigns to his being at x , where

$$\sum_{x \in h} \mu(x) = 1,$$

for every information set $h \in H$.

Beliefs and Sequential Rationality

Definition 15.2

$\mu(x) \in [0, 1]$ is the probability that player i who moves in information set h assigns to his being at x , where

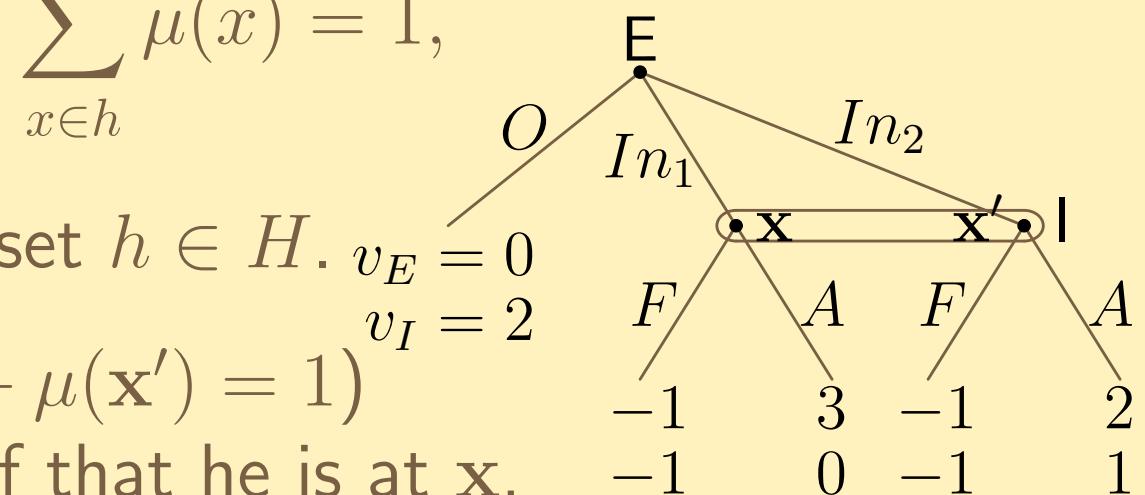
$$\sum_{x \in h} \mu(x) = 1,$$

for every information set $h \in H$. $v_E = 0$ $v_I = 2$

Player I 's belief $(\mu(x) + \mu(x')) = 1$

$\mu(x)$: Player I 's belief that he is at x ,

$\mu(x')$: Player I 's belief that he is at x' .



Beliefs and Sequential Rationality

Definition 15.2

$\mu(x) \in [0, 1]$ is the probability that player i who moves in information set h assigns to his being at x , where

$$\sum_{x \in h} \mu(x) = 1,$$

for every information set $h \in H$. $v_E = 0$ $v_I = 2$

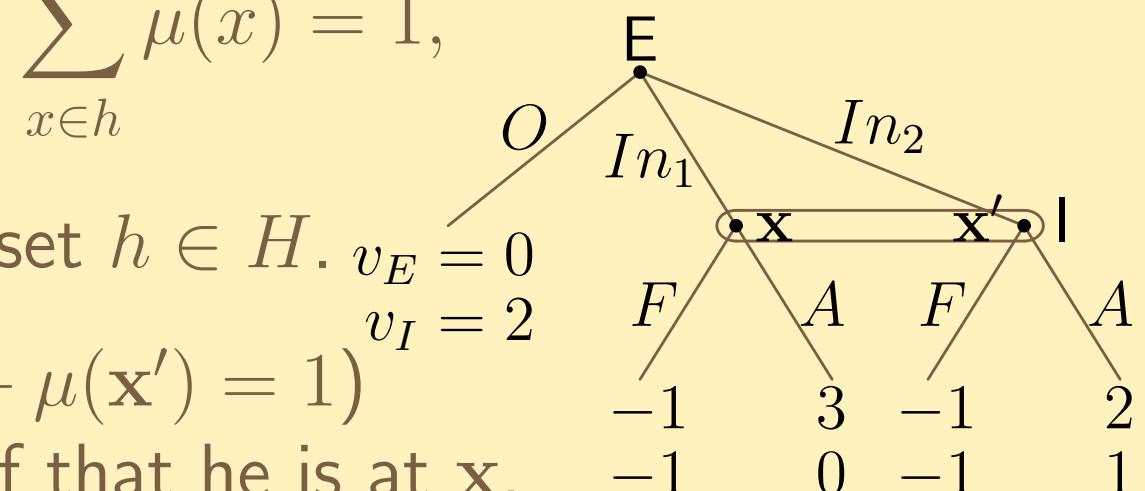
Player I 's belief $(\mu(x) + \mu(x')) = 1$

$\mu(x)$: Player I 's belief that he is at x ,

$\mu(x')$: Player I 's belief that he is at x' .

For any $\mu(x)$, play A is better for player I than play F .

Calculate its expected payoffs of play A and play F .



Beliefs and Sequential Rationality

Requirement 15.1 Every player will have a well-defined belief over where he is in each of his information sets. That is, the game will have a *system of beliefs*.

How do we determine the beliefs?

Beliefs and Sequential Rationality

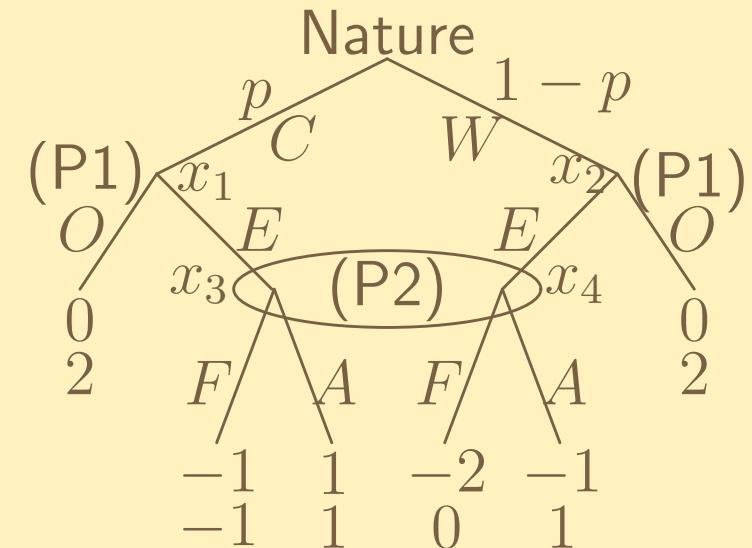
Requirement 15.1 The game will have a *system of beliefs*.

If P1's strategy is EO , $\mu(x_3) = 1$.

x_3 is reached with prob. $p \times 1$

x_4 is reached with prob. $(1 - p)0$.

Applying Bayes' rule, we have
 $\mu(x_3) = 1$.



Beliefs and Sequential Rationality

Requirement 15.1 The game will have a *system of beliefs*.

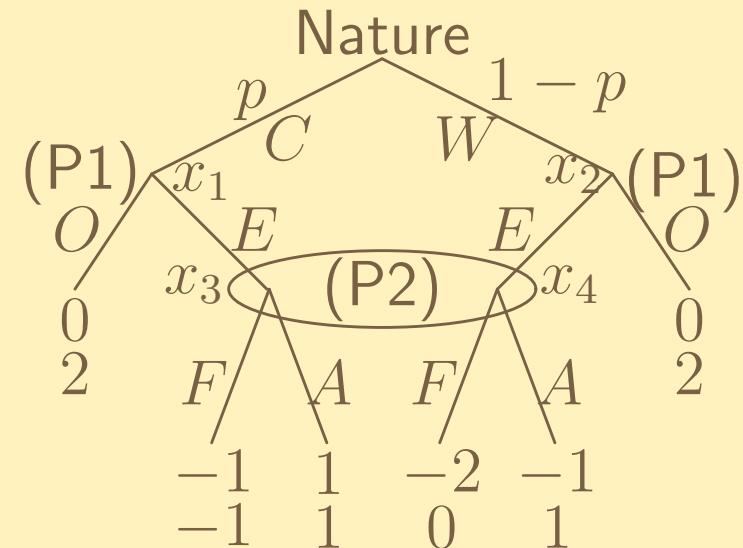
If P1's strategy is EO , $\mu(x_3) = 1$.

By considering behavioral strategy, we generalize the argument.

If P1's strategy is (σ_C, σ_W) , where σ_k is the probability that he plays E when he is k ($k = C, W$),

$$\mu(x_3) = \frac{p\sigma_C}{p\sigma_C + (1 - p)\sigma_W}.$$

Here, we ignore the case in which $(\sigma_C, \sigma_W) = (0, 0)$ (that is, OO). Explain it later.



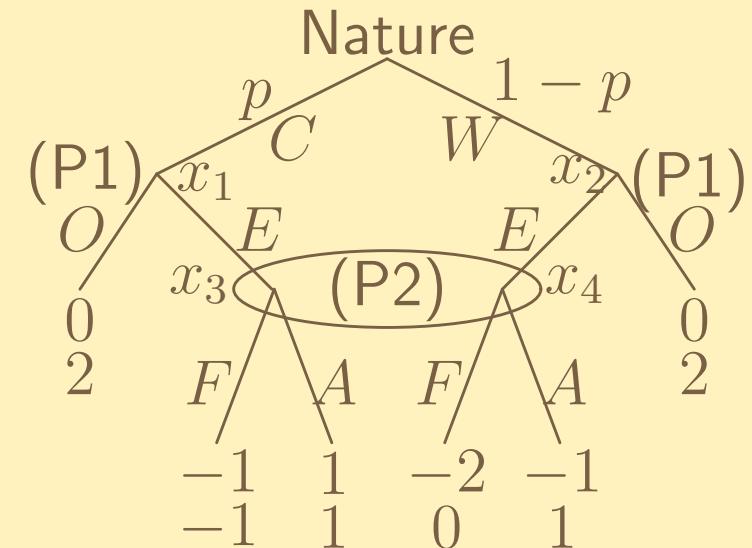
Beliefs and Sequential Rationality

Requirement 15.1 The game will have a *system of beliefs*.

If P1's strategy is EO , $\mu(x_3) = 1$.

If P1's strategy is (σ_C, σ_W) , where σ_k is the probability that he plays E when he is k ($k = C, W$),

$$\mu(x_3) = \frac{p\sigma_C}{p\sigma_C + (1 - p)\sigma_W}.$$



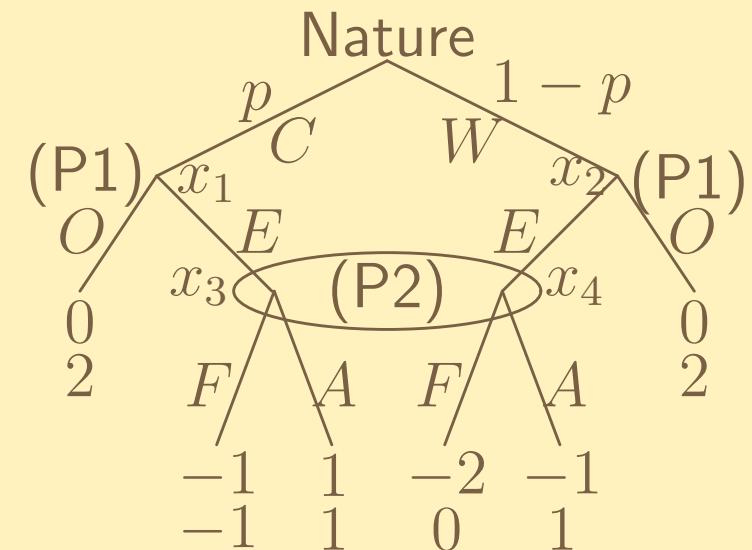
Requirement 15.2 Let $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$ be a Bayesian Nash equilibrium profile of strategies. We require that in all information sets, **beliefs that are on** the equilibrium path be consistent with *Bayes' rule*.

Beliefs and Sequential Rationality

Requirement 15.1 The game will have a *system of beliefs*.

If P1's strategy is (σ_C, σ_W) , where σ_k is the probability that he plays E when he is k ($k = C, W$),

$$\mu(x_3) = \frac{p\sigma_C}{p\sigma_C + (1 - p)\sigma_W}.$$



If P1's strategy is $(\sigma_C, \sigma_W) = (0, 0)$ (that is, OO), the information set of P2 is off the equilibrium path.

Beliefs and Sequential Rationality

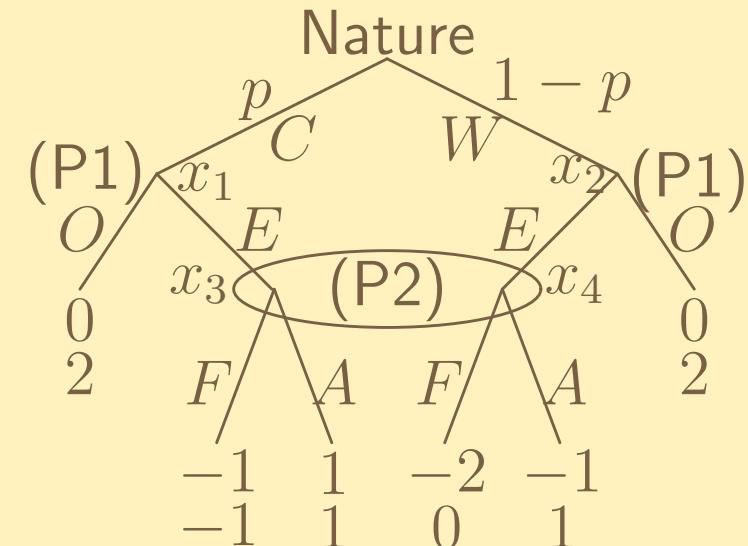
Requirement 15.1 The game will have a *system of beliefs*.

If P1's strategy is (σ_C, σ_W) , where σ_k is the probability that he plays E when he is k ($k = C, W$),

$$\mu(x_3) = \frac{p\sigma_C}{p\sigma_C + (1 - p)\sigma_W}.$$

If P1's strategy is $(\sigma_C, \sigma_W) = (0, 0)$ (that is, OO), the information set of P2 is off the equilibrium path.

Requirement 15.3 At information sets that are **off** the equilibrium path, **any belief can be assigned**.
We must assign beliefs even for such information sets.

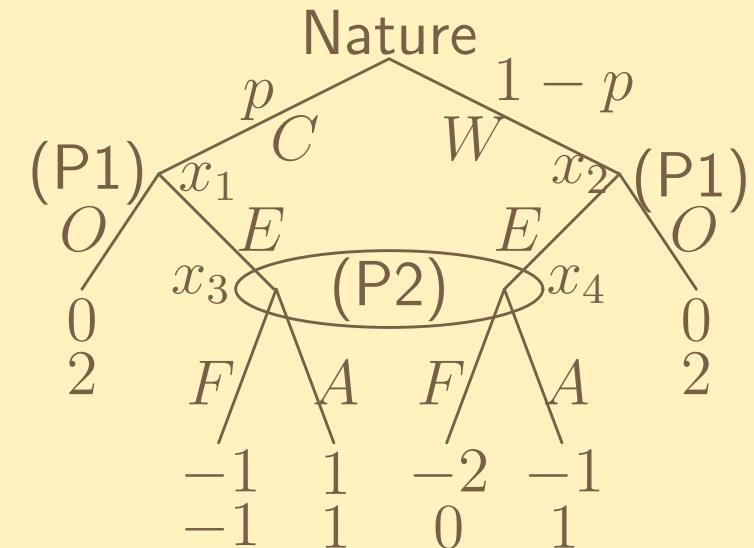


Beliefs and Sequential Rationality

Requirement 15.1 The game will have a *system of beliefs*.

If P1's strategy is (σ_C, σ_W) , where σ_k is the probability that he plays E when he is k ($k = C, W$),

$$\mu(x_3) = \frac{p\sigma_C}{p\sigma_C + (1 - p)\sigma_W}.$$



Requirement 15.2 In all information sets **beliefs** that are **on** the equilibrium path be consistent with *Bayes' rule*.

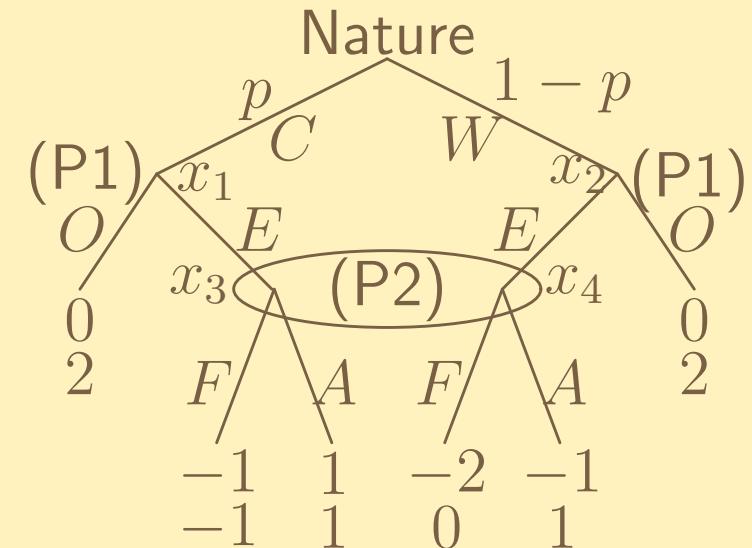
Requirement 15.3 At information sets that are **off** the equilibrium path, **any belief can be assigned**. Those define how to assign beliefs in information sets.

Beliefs and Sequential Rationality

Requirement 15.1 The game will have a *system of beliefs*.

If P1's strategy is (σ_C, σ_W) , where σ_k is the probability that he plays E when he is k ($k = C, W$),

$$\mu(x_3) = \frac{p\sigma_C}{p\sigma_C + (1 - p)\sigma_W}.$$



Requirement 15.2 In all information sets **beliefs** that are **on the equilibrium path** be consistent with *Bayes' rule*.

Requirement 15.4 Given their beliefs, players' strategies must be **sequentially rational**. That is, in every information set, players will play a best response to their beliefs.

Beliefs and Sequential Rationality

Def. Expected utility $E[v_i(\sigma_i, \sigma_{-i}, \theta_i)|h, \mu]$

Player i 's expected payoff starting at his information set h if the belief is given by μ , if player i follows σ_i and others follow σ_{-i} , and if his type is θ_i .

$\iota(h)$: the player who moves at information set h .

Def. 9.C.2 A strategy profile σ of an extensive-form game is **sequentially rational** at information set h given a system of beliefs μ if $\forall \hat{\sigma}_{\iota(h)} \in \Delta(S_{\iota(h)})$,

$$\begin{aligned} & E[v_{\iota(h)}(\sigma_{\iota(h)}, \sigma_{-\iota(h)}, \theta_i)|h, \mu] \\ & \geq E[v_{\iota(h)}(\hat{\sigma}_{\iota(h)}, \sigma_{-\iota(h)}, \theta_i)|h, \mu]. \end{aligned}$$

Beliefs and Sequential Rationality

Def. Expected utility $E[v_i(\sigma_i, \sigma_{-i}, \theta_i)|h, \mu]$

$\iota(h)$: the player who moves at information set h .

Def. 9.C.2 A strategy profile σ of an extensive-form game is **sequentially rational** at information set h given a system of beliefs μ if $\forall \hat{\sigma}_{\iota(h)} \in \Delta(S_{\iota(h)})$,

$$\begin{aligned} & E[v_{\iota(h)}(\sigma_{\iota(h)}, \sigma_{-\iota(h)}, \theta_i)|h, \mu] \\ & \geq E[v_{\iota(h)}(\hat{\sigma}_{\iota(h)}, \sigma_{-\iota(h)}, \theta_i)|h, \mu]. \end{aligned}$$

A strategy profile σ is **sequentially rational given μ** , if σ is sequentially rational at any information set h given μ .

Update of Beliefs

$\Pr(x|\sigma)$: Prob. of reaching a node x given play of σ .

Update of Beliefs

$\Pr(x|\sigma)$: Prob. of reaching a node x given play of σ .

$\Pr(h|\sigma) = \sum_{x \in h} \Pr(x|\sigma)$: Prob. of reaching an information set h given play of σ .

Update of Beliefs

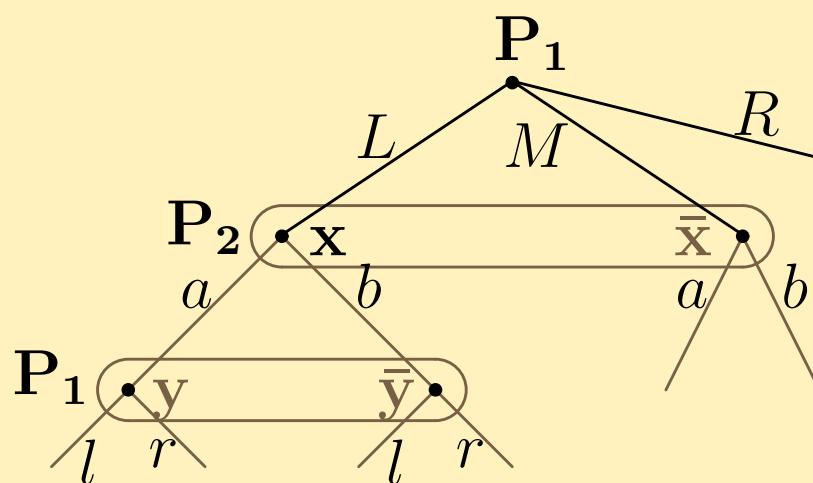
$\Pr(x|\sigma)$: Prob. of reaching a node x given play of σ .

$\Pr(h|\sigma) = \sum_{x \in h} \Pr(x|\sigma)$: Prob. of reaching an information set h given play of σ .

$\Pr(x|h, \sigma) = \frac{\Pr(x|\sigma)}{\sum_{x' \in h} \Pr(x'|\sigma)}$: Cond. Prob. of being at x given that σ and the play reached h .

Update of Beliefs

$\Pr(x|h, \sigma) = \frac{\Pr(x|\sigma)}{\sum_{x' \in h} \Pr(x'|\sigma)}$: Cond. Prob. of being at x given that σ and the play reached h .



$$\begin{aligned}\Pr(y|h_y, \sigma) &= \frac{\Pr(y|\sigma)}{\Pr(h_y|\sigma)} \\ &= \frac{\sigma_1(L)\sigma_2(a)}{\sigma_1(L)\sigma_2(a) + \sigma_1(L)\sigma_2(b)} \\ &= \frac{\sigma_2(a)}{\sigma_2(a) + \sigma_2(b)}.\end{aligned}$$

(weak) Perfect Bayesian Equilibrium

Def. A system of beliefs μ is **(weakly) consistent with σ** if for all information set h with $\Pr(h|\sigma) > 0$ and all $x \in h$, $\mu(x) = \Pr(x|h, \sigma)$.

(weak) Perfect Bayesian Equilibrium

Def. A system of beliefs μ is **(weakly) consistent with σ** if for all information set h with $\Pr(h|\sigma) > 0$ and all $x \in h$, $\mu(x) = \Pr(x|h, \sigma)$.

Definition 15.3 A Bayesian Nash equilibrium profile σ^* together with a system of beliefs μ constitutes a **(weak) perfect Bayesian equilibrium** for an n -player game if

1. σ^* is sequentially rational given μ (Req. 15.4).
2. μ is weakly consistent with σ^* (Req. 15.1-3).

(weak) Perfect Bayesian Equilibrium

Definition 15.3 A Bayesian Nash equilibrium profile σ^* together with a system of beliefs μ constitutes a **(weak) perfect Bayesian equilibrium** for an n -player game if

1. σ^* is sequentially rational given μ (Req. 15.4).
2. μ is weakly consistent with σ^* (Req. 15.1-3).

Prop. 9.C.1 A strategy profile σ is a Nash equilibrium of Γ iff there is a system of beliefs μ such that

1. σ is sequentially rational given μ **at all information sets h such that $\Pr(h|\sigma) > 0$** ,
Nash Eq. does NOT require sequential rationality for information sets which are **off** the equilibrium path.
2. μ is weakly consistent with σ .

(weak) Perfect Bayesian Equilibrium

Definition 15.3 A Bayesian Nash equilibrium profile σ^* together with a system of beliefs μ constitutes a **(weak) perfect Bayesian equilibrium** for an n -player game if

1. σ^* is sequentially rational given μ (Req. 15.4).
2. μ is weakly consistent with σ^* (Req. 15.1-3).

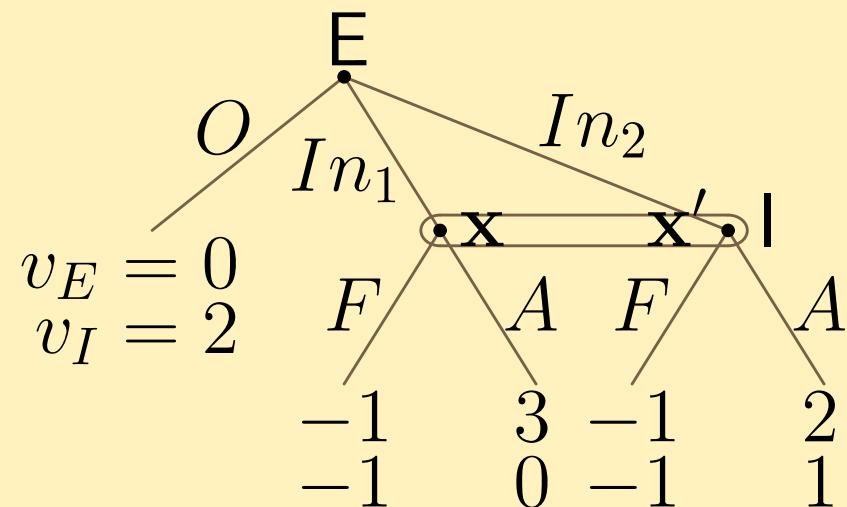
Prop. 15.1 If a strategy profile σ^* is a Bayesian Nash equilibrium of a Bayesian game Γ , and if σ^* induces all the information sets to be **reached with positive probability**, then σ^* , together with the belief system μ^* uniquely derived from σ^* and the distribution of types, constitutes a perfect Bayesian equilibrium for Γ .

⇒ In all the information sets, σ^* and μ satisfy the Reqs.

Example

Example 9.C.1 Since A is a strictly dominant strategy, whatever μ is, only A is sequentially rational. Nash eq. (O, F) is NOT a weakly perfect Bayesian equilibrium.

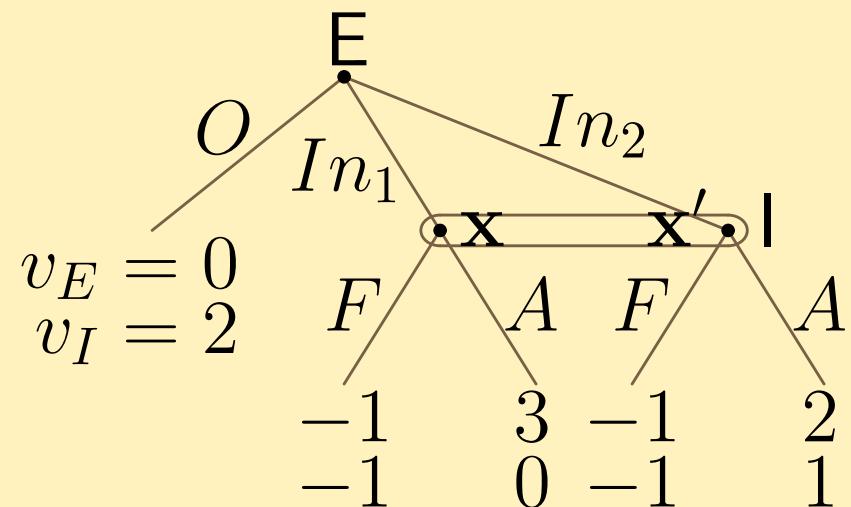
E/I	F	A
O	0, 2	0, 2
In_1	-1, -1	3, 0
In_2	-1, -1	2, 1



Example

Example 9.C.1 Since A is a strictly dominant strategy, whatever μ is, only A is sequentially rational. Nash eq. (O, F) is NOT a weakly perfect Bayesian equilibrium.

E/I	F	A
O	0, 2	0, 2
In_1	-1, -1	3, 0
In_2	-1, -1	2, 1

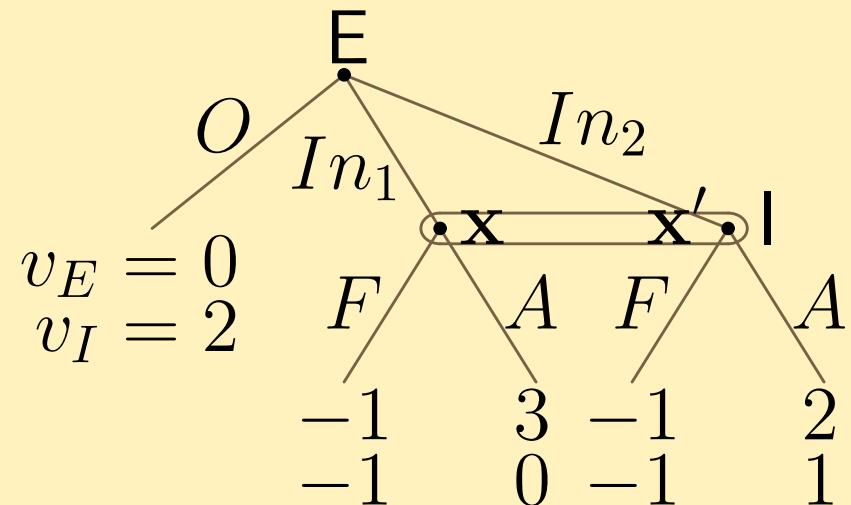


Given that E chooses $\sigma(O) = 1$, there is NO requirement for the belief of I .

Example

Example 9.C.1 Since A is a strictly dominant strategy, whatever μ is, only A is sequentially rational. Nash eq. (O, F) is NOT a weakly perfect Bayesian equilibrium.

E/I	F	A
O	0, 2	0, 2
In_1	-1, -1	3, 0
In_2	-1, -1	2, 1



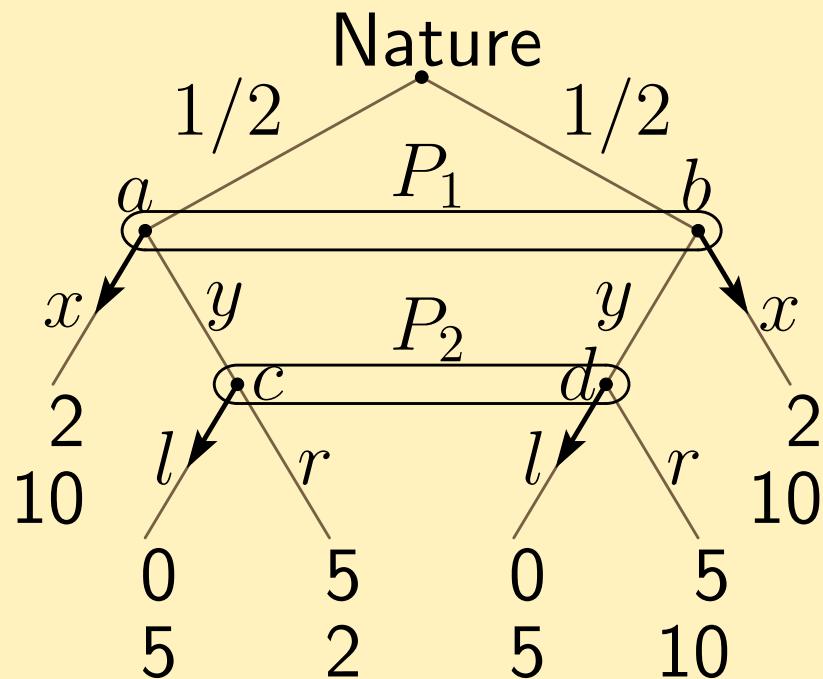
Given that E chooses $\sigma(O) = 1$, there is NO requirement for the belief of I . However, for any μ , A is a strictly dominant strategy.

Strengthening the wPBE concept

Strengthening the wPBE concept (9.C.4)

$$\mu(a) = 1/2, \mu(b) = 1/2, \mu(c) = 9/10, \mu(d) = 1/10.$$

The arrows in the figure indicate the strategies.

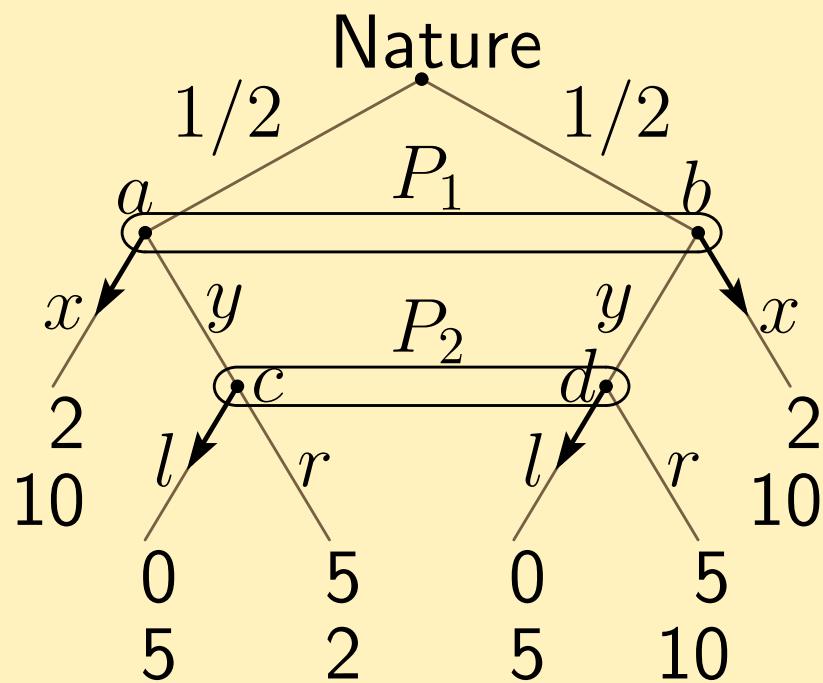


Strengthening the wPBE concept

Strengthening the wPBE concept (9.C.4)

$$\mu(a) = 1/2, \mu(b) = 1/2, \mu(c) = 9/10, \mu(d) = 1/10.$$

The arrows in the figure indicate the strategies.



No restrictions at all are placed on beliefs **off the equilibrium path** (see Req. 15-3).

However, $\mu(c) = 9/10$ seems to be structurally inconsistent.

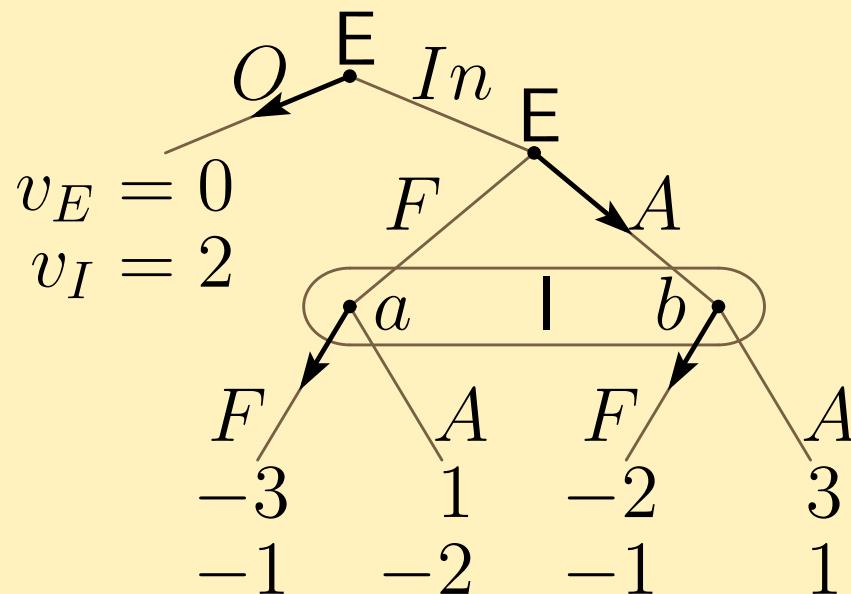
$\mu(c) = 1/2$ would be more reasonable (see Nature's choice).

Strengthening the wPBE concept

Strengthening the wPBE concept (9.C.5)

$$\mu(a) = 1, \mu(b) = 0.$$

The arrows in the figure indicate the strategies.

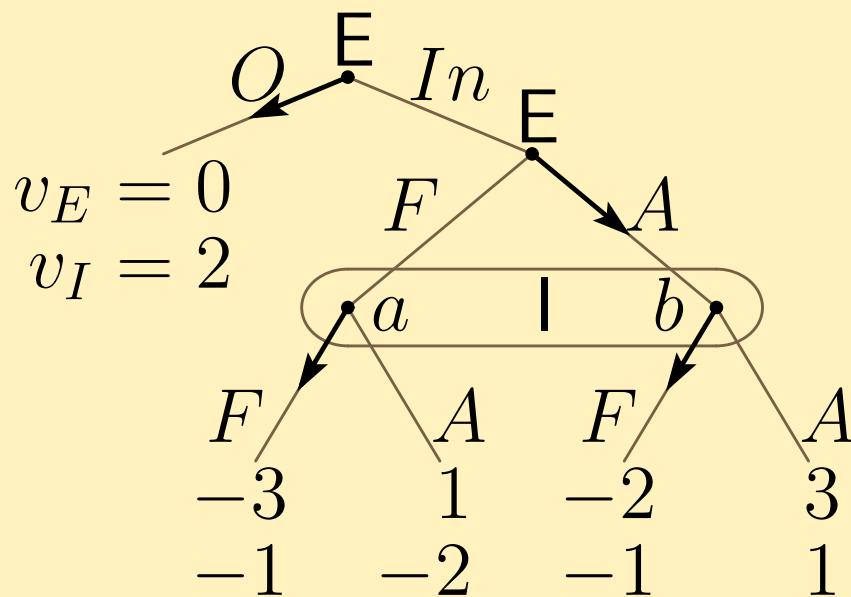


Strengthening the wPBE concept

Strengthening the wPBE concept (9.C.5)

$$\mu(a) = 1, \mu(b) = 0.$$

The arrows in the figure indicate the strategies.



E/I	F	A
F	$-3, -1$	$1, -2$
A	$-2, -1$	$3, 1$

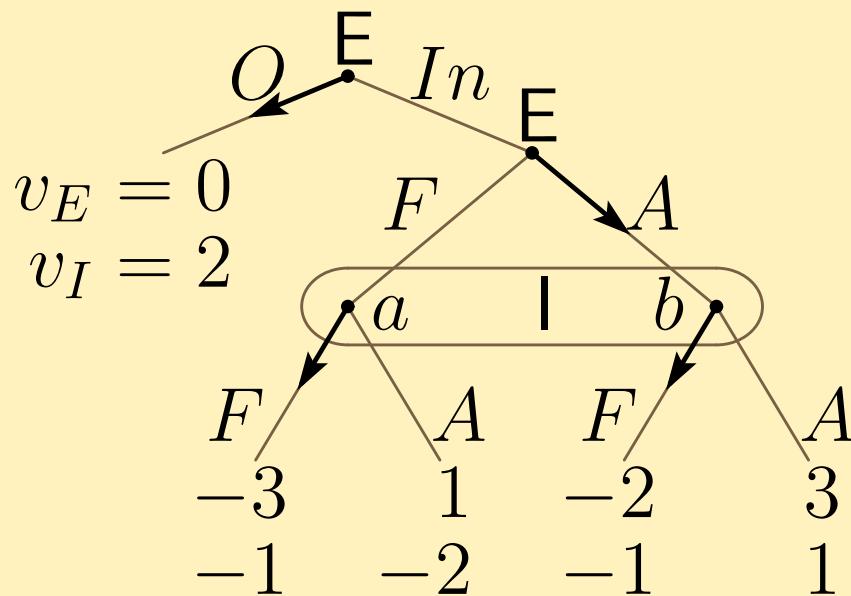
No restrictions at all are placed on beliefs **off the equilibrium path**.

Strengthening the wPBE concept

Strengthening the wPBE concept (9.C.5)

$$\mu(a) = 1, \mu(b) = 0.$$

The arrows in the figure indicate the strategies.



E/I	F	A
F	$-3, -1$	$1, -2$
A	$-2, -1$	$3, 1$

No restrictions at all are placed on beliefs **off the equilibrium path**.

This outcome is NOT a SPNE outcome.

Sequential equilibrium

Definition 15.4 A system of beliefs μ is **consistent with σ** if there is a sequence $\{\sigma^k\}_{k=1}^{\infty}$ of total mixed strategies such that

$$1. \lim_{k \rightarrow \infty} \sigma^k = \sigma, \quad 2. \mu = \lim_{k \rightarrow \infty} \mu^k,$$

where for all k , μ^k is the system of beliefs derived from σ^k by Bayes' rule.

Sequential equilibrium

Definition 15.4 A system of beliefs μ is **consistent with σ** if there is a sequence $\{\sigma^k\}_{k=1}^{\infty}$ of total mixed strategies such that

1. $\lim_{k \rightarrow \infty} \sigma^k = \sigma$,
2. $\mu = \lim_{k \rightarrow \infty} \mu^k$,

where for all k , μ^k is the system of beliefs derived from σ^k by Bayes' rule.

Definition 15.5 A pair (σ, μ) of strategy profile and system of beliefs is a **sequential equilibrium** if

1. σ is sequential rational given μ .
2. μ is consistent with σ .

Sequential equilibrium

Definition 15.4 A system of beliefs μ is **consistent with σ** if there is a sequence $\{\sigma^k\}_{k=1}^{\infty}$ of total mixed strategies such that

1. $\lim_{k \rightarrow \infty} \sigma^k = \sigma$,
2. $\mu = \lim_{k \rightarrow \infty} \mu^k$,

Definition 15.5 A pair (σ, μ) of strategy profile and system of beliefs is a **sequential equilibrium** if

1. σ is sequential rational given μ .
2. μ is consistent with σ .

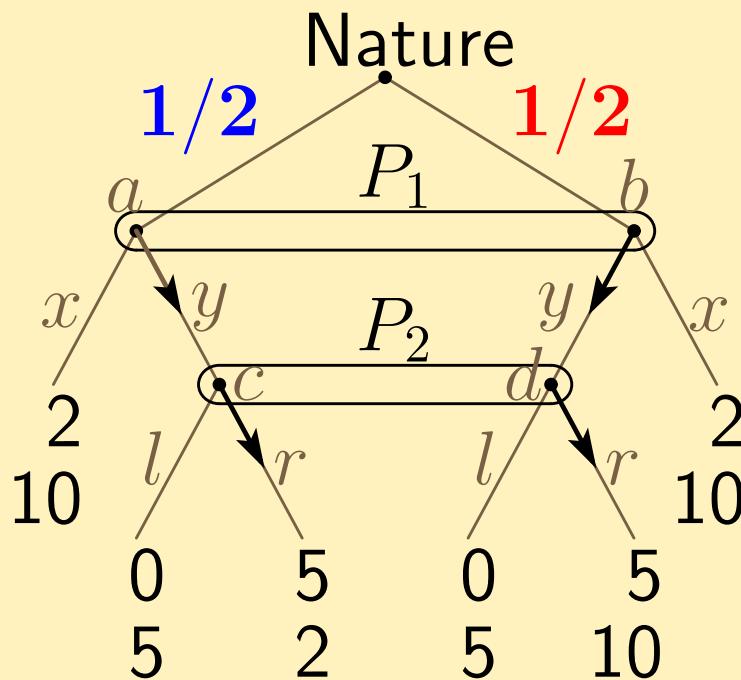
Prop. 9.C.2 In every sequential equilibrium (σ, μ) of Γ_E , a strategy profile σ is a subgame perfect Nash equilibrium of Γ_E

Example

Ex. 9.C.4 Reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{1}{2} \text{ and } \mu^k(c) = \frac{0.5\sigma_1^k(y)}{0.5\sigma_1^k(y) + 0.5\sigma_1^k(y)} = \frac{1}{2}.$$

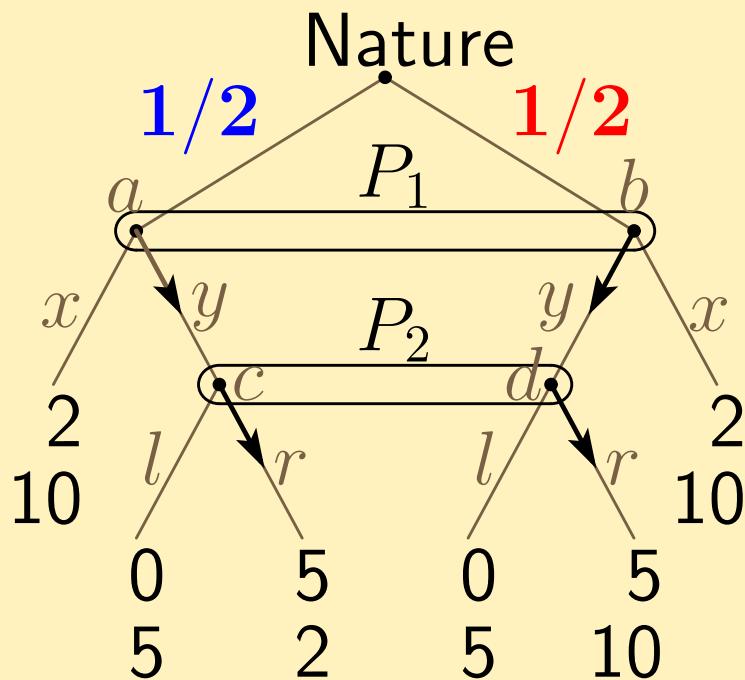


Example

Ex. 9.C.4 Reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{1}{2} \text{ and } \mu^k(c) = \frac{0.5\sigma_1^k(y)}{0.5\sigma_1^k(y) + 0.5\sigma_1^k(y)} = \frac{1}{2}.$$



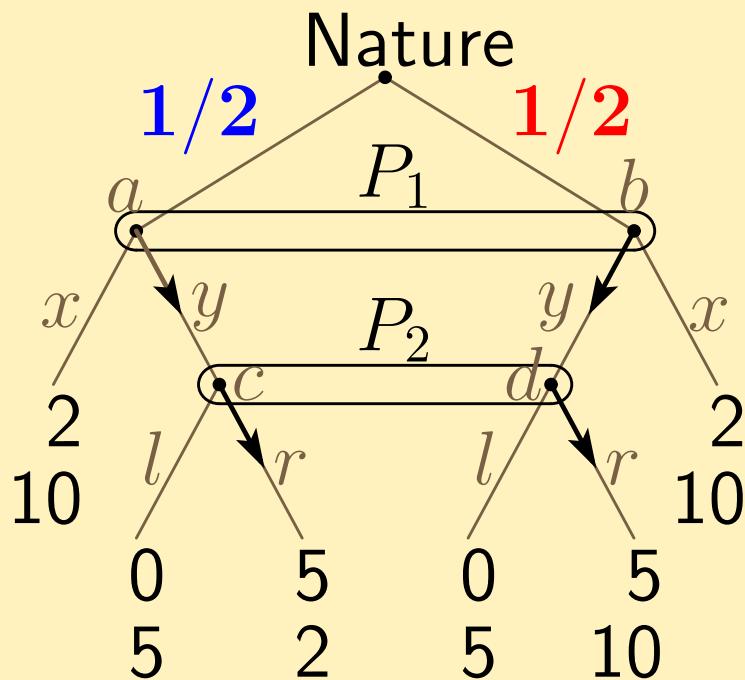
$$\begin{aligned}\lim_{k \rightarrow \infty} \mu^k(a) &= 1/2, \\ \lim_{k \rightarrow \infty} \mu^k(c) &= 1/2.\end{aligned}$$

Example

Ex. 9.C.4 Reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{1}{2} \text{ and } \mu^k(c) = \frac{0.5\sigma_1^k(y)}{0.5\sigma_1^k(y) + 0.5\sigma_1^k(y)} = \frac{1}{2}.$$



$$\begin{aligned} \lim_{k \rightarrow \infty} \mu^k(a) &= 1/2, \\ \lim_{k \rightarrow \infty} \mu^k(c) &= 1/2. \end{aligned}$$

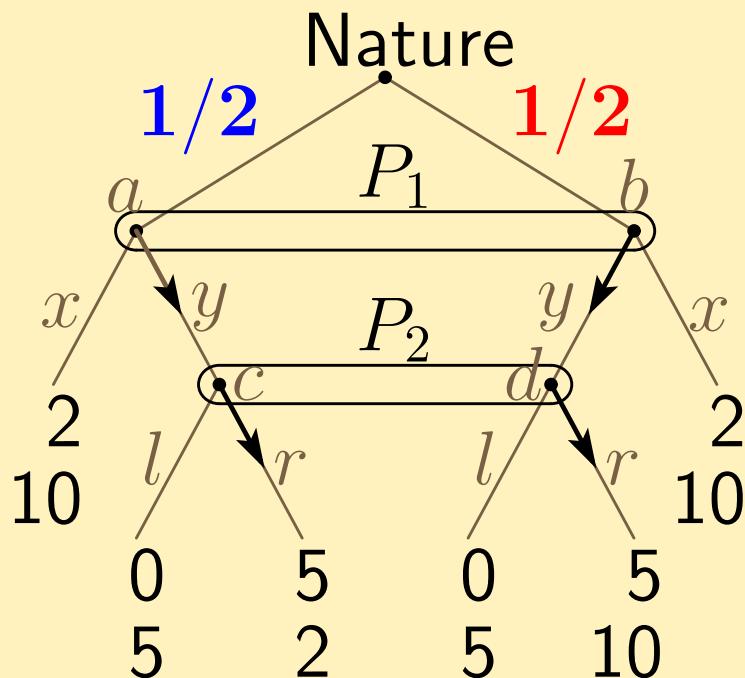
$$\begin{aligned} E(v_2|h_2, \mu, \mathbf{r}, \sigma_1) &= (1/2)2 + (1/2)10 \\ &> E(v_2|h_2, \mu, \mathbf{l}, \sigma_1) = (1/2)5 + (1/2)5. \\ \Rightarrow \sigma_2(r) &= 1, \sigma_2(l) = 0. \end{aligned}$$

Example

Ex. 9.C.4 Reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{1}{2} \text{ and } \mu^k(c) = \frac{0.5\sigma_1^k(y)}{0.5\sigma_1^k(y) + 0.5\sigma_1^k(y)} = \frac{1}{2}.$$



$$\begin{aligned} \lim_{k \rightarrow \infty} \mu^k(a) &= 1/2, \\ \lim_{k \rightarrow \infty} \mu^k(c) &= 1/2. \\ \Rightarrow \sigma_2(r) &= 1, \sigma_2(l) = 0. \end{aligned}$$

$$\begin{aligned} E(v_1 | h_1, \mu, \mathbf{y}, \sigma_2) &= 5 \\ &> E(v_1 | h_1, \mu, \mathbf{x}, \sigma_2) = 2. \\ \Rightarrow \sigma_1(y) &= 1, \sigma_1(x) = 0. \end{aligned}$$

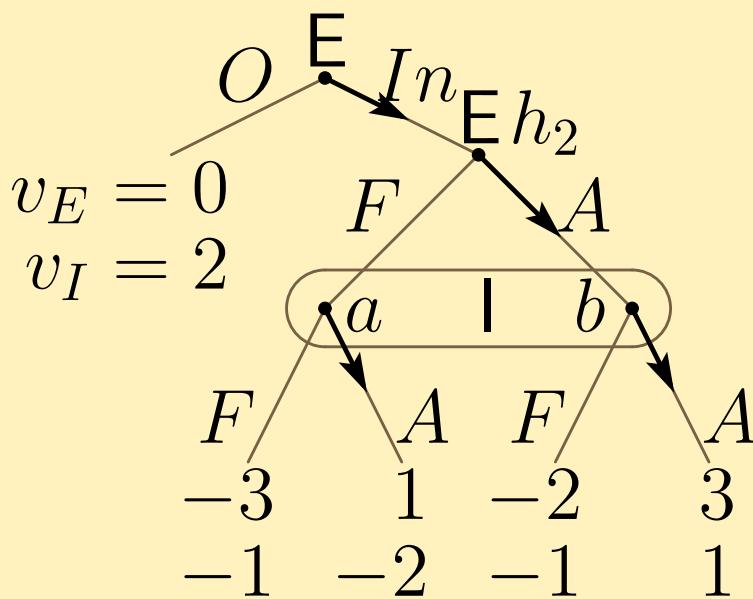
Example

Ex. 9.C.5 reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{\Pr(a|\sigma^k)}{\Pr(h_I|\sigma^k)} = \frac{\sigma_E^k(\text{In}) \times \sigma_E^k(F)}{\sigma_E^k(\text{In})} = \sigma_E^k(F).$$

$$\mu(a) = \lim_{k \rightarrow \infty} \mu^k(a) = \lim_{k \rightarrow \infty} \sigma_E^k(F) = \sigma_E(F).$$



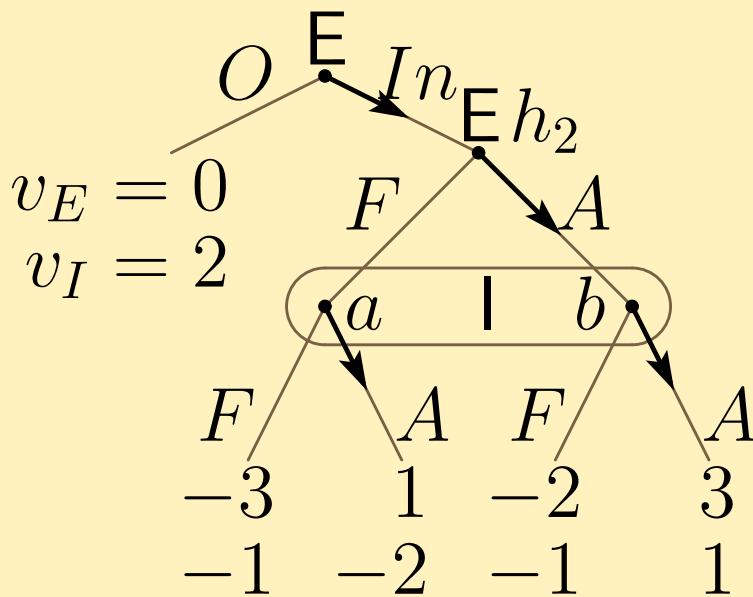
Example

Ex. 9.C.5 reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{\Pr(a|\sigma^k)}{\Pr(h_I|\sigma^k)} = \frac{\sigma_E^k(\text{In}) \times \sigma_E^k(F)}{\sigma_E^k(\text{In})} = \sigma_E^k(F).$$

$$\mu(a) = \lim_{k \rightarrow \infty} \mu^k(a) = \lim_{k \rightarrow \infty} \sigma_E^k(F) = \sigma_E(F).$$



$$E(v_E|h_2, \mu, \sigma_E(\text{In}), \mathbf{F}, \sigma_I) \\ < E(v_E|h_2, \mu, \sigma_E(\text{In}), \mathbf{A}, \sigma_I).$$

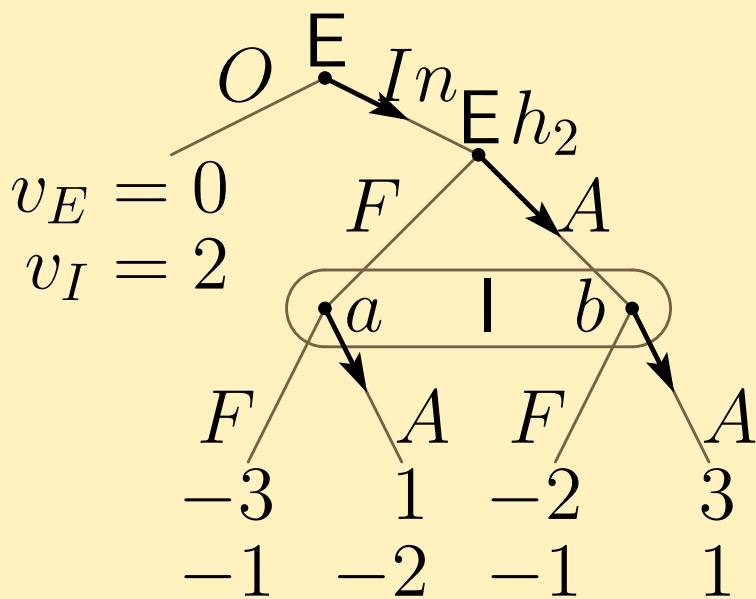
Example

Ex. 9.C.5 reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{\Pr(a|\sigma^k)}{\Pr(h_I|\sigma^k)} = \frac{\sigma_E^k(\text{In}) \times \sigma_E^k(F)}{\sigma_E^k(\text{In})} = \sigma_E^k(F).$$

$$\mu(a) = \lim_{k \rightarrow \infty} \mu^k(a) = \lim_{k \rightarrow \infty} \sigma_E^k(F) = \sigma_E(F).$$



$$\begin{aligned}
 & E(v_E|h_2, \mu, \sigma_E(\text{In}), \mathbf{F}, \sigma_I) \\
 & < E(v_E|h_2, \mu, \sigma_E(\text{In}), \mathbf{A}, \sigma_I). \\
 \Rightarrow & \sigma_E(F) = 0, \sigma_E(A) = 1.
 \end{aligned}$$

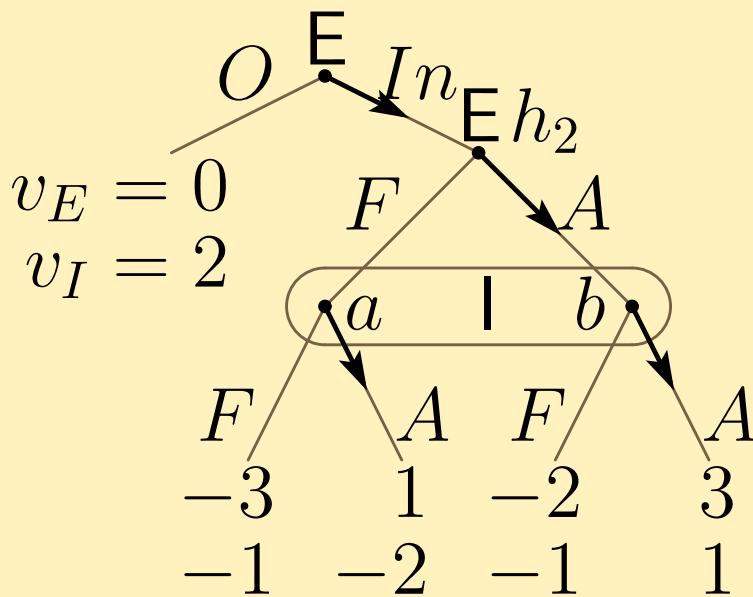
Example

Ex. 9.C.5 reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{\Pr(a|\sigma^k)}{\Pr(h_I|\sigma^k)} = \frac{\sigma_E^k(\text{In}) \times \sigma_E^k(F)}{\sigma_E^k(\text{In})} = \sigma_E^k(F).$$

$$\mu(a) = \lim_{k \rightarrow \infty} \mu^k(a) = \lim_{k \rightarrow \infty} \sigma_E^k(F) = \sigma_E(F).$$



$$\sigma_E(F) = 0, \sigma_E(A) = 1.$$

$$E(v_I|h_I, \mu, \sigma_E, \mathbf{F}) < E(v_I|h_I, \mu, \sigma_E, \mathbf{A}).$$

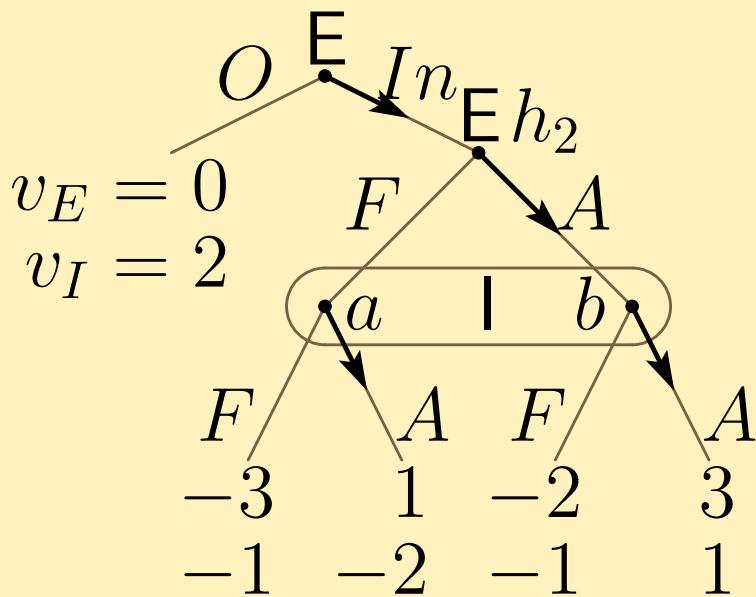
Example

Ex. 9.C.5 reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{\Pr(a|\sigma^k)}{\Pr(h_I|\sigma^k)} = \frac{\sigma_E^k(\text{In}) \times \sigma_E^k(F)}{\sigma_E^k(\text{In})} = \sigma_E^k(F).$$

$$\mu(a) = \lim_{k \rightarrow \infty} \mu^k(a) = \lim_{k \rightarrow \infty} \sigma_E^k(F) = \sigma_E(F).$$



$$\sigma_E(F) = 0, \sigma_E(A) = 1.$$

$$E(v_I|h_I, \mu, \sigma_E, \mathbf{F}) < E(v_I|h_I, \mu, \sigma_E, \mathbf{A}).$$

$$\Rightarrow \sigma_I(F) = 0, \sigma_I(A) = 1.$$

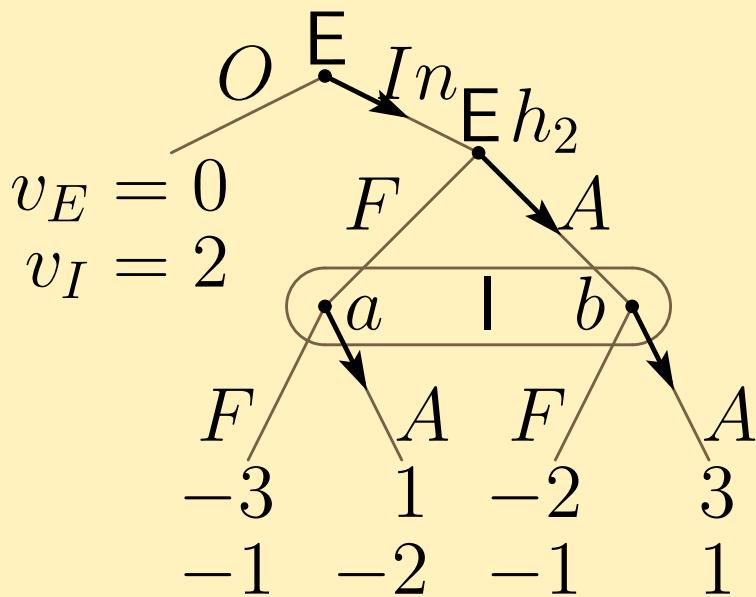
Example

Ex. 9.C.5 reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{\Pr(a|\sigma^k)}{\Pr(h_I|\sigma^k)} = \frac{\sigma_E^k(\text{In}) \times \sigma_E^k(F)}{\sigma_E^k(\text{In})} = \sigma_E^k(F).$$

$$\mu(a) = \lim_{k \rightarrow \infty} \mu^k(a) = \lim_{k \rightarrow \infty} \sigma_E^k(F) = \sigma_E(F).$$



$$\sigma_E(F) = 0, \sigma_E(A) = 1.$$

$$\sigma_I(F) = 0, \sigma_I(A) = 1.$$

$$E(u_E|H_1, \mu, \sigma_I, \text{Out})$$

$$< E(u_E|H_1, \mu, \sigma_I, \text{In}).$$

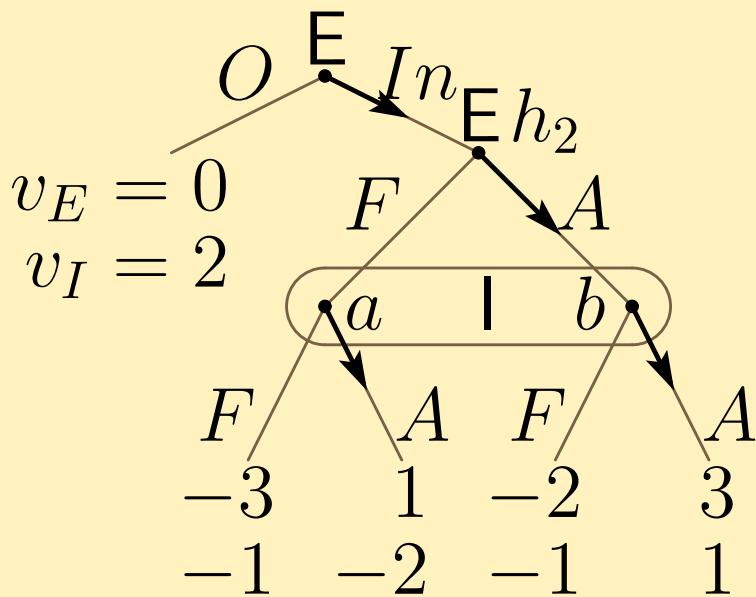
Example

Ex. 9.C.5 reconsidered

Let (σ, μ) be a sequential equilibrium. Let $\sigma^k \rightarrow \sigma$.

$$\forall k, \mu^k(a) = \frac{\Pr(a|\sigma^k)}{\Pr(h_I|\sigma^k)} = \frac{\sigma_E^k(\text{In}) \times \sigma_E^k(F)}{\sigma_E^k(\text{In})} = \sigma_E^k(F).$$

$$\mu(a) = \lim_{k \rightarrow \infty} \mu^k(a) = \lim_{k \rightarrow \infty} \sigma_E^k(F) = \sigma_E(F).$$



$$\sigma_E(F) = 0, \sigma_E(A) = 1.$$

$$\sigma_I(F) = 0, \sigma_I(A) = 1.$$

$$E(u_E|H_1, \mu, \sigma_I, \text{Out})$$

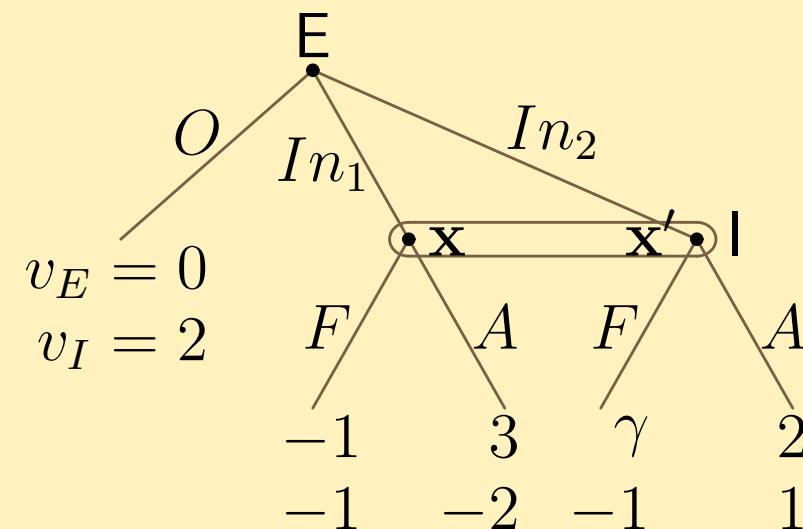
$$< E(u_E|H_1, \mu, \sigma_I, \text{In}).$$

$$((\sigma_E, \sigma_I), (\mu(a), \mu(b)))$$

$$= (((In, A), A), (0, 1)).$$

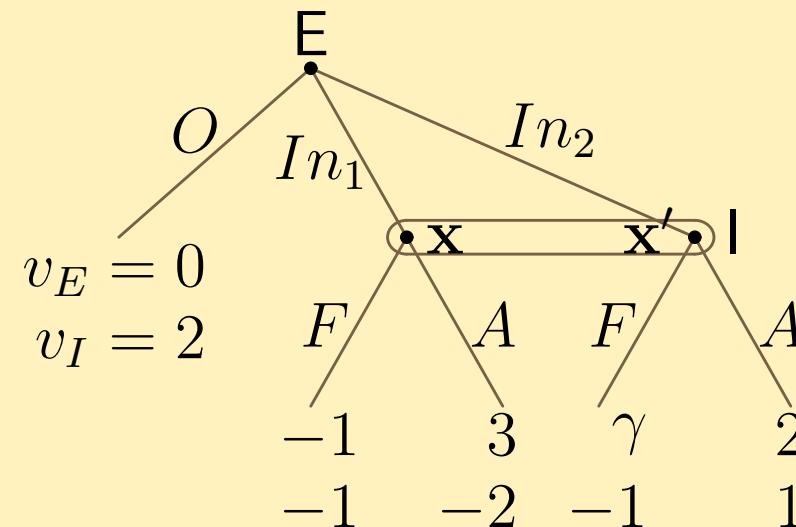
Example

Example 9.C.3 $(\gamma > -1, \gamma \neq 0)$



Example

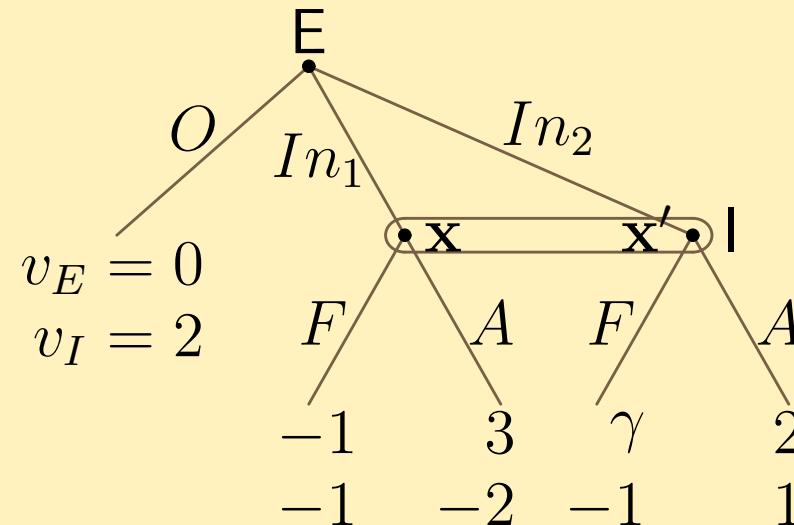
Example 9.C.3 $(\gamma > -1, \gamma \neq 0)$



$$E[v_I(F, \sigma_E) | \mu] \gtrless E[v_I(A, \sigma_E) | \mu] \Leftrightarrow \mu(\mathbf{x}) \gtrless 2/3.$$

Example

Example 9.C.3 ($\gamma > -1, \gamma \neq 0$)



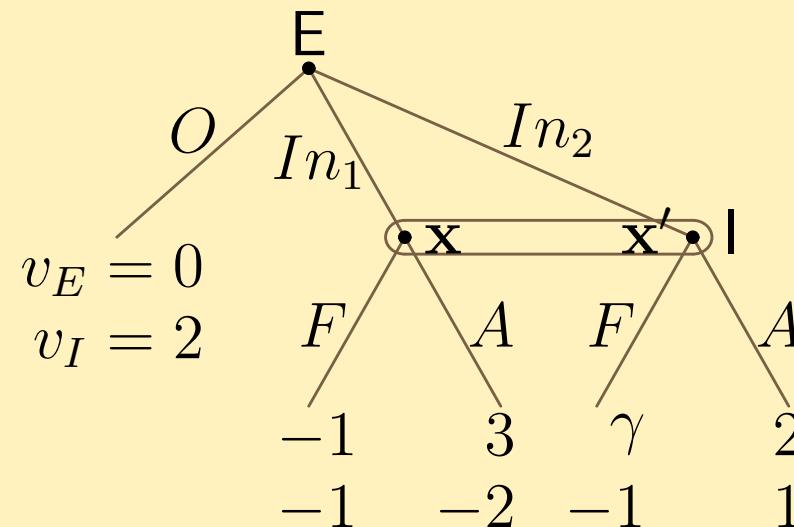
$$E[v_I(F, \sigma_E)|\mu] \gtrless E[v_I(A, \sigma_E)|\mu] \Leftrightarrow \mu(\mathbf{x}) \gtrless 2/3.$$

$(\gamma > 0)$:

$$\mu(\mathbf{x}) > 2/3 \Rightarrow \sigma_I(F) = 1 \Rightarrow \sigma_E(In_2) = 1 \Rightarrow \mu(\mathbf{x}) = 0.$$

Example

Example 9.C.3 ($\gamma > -1, \gamma \neq 0$)



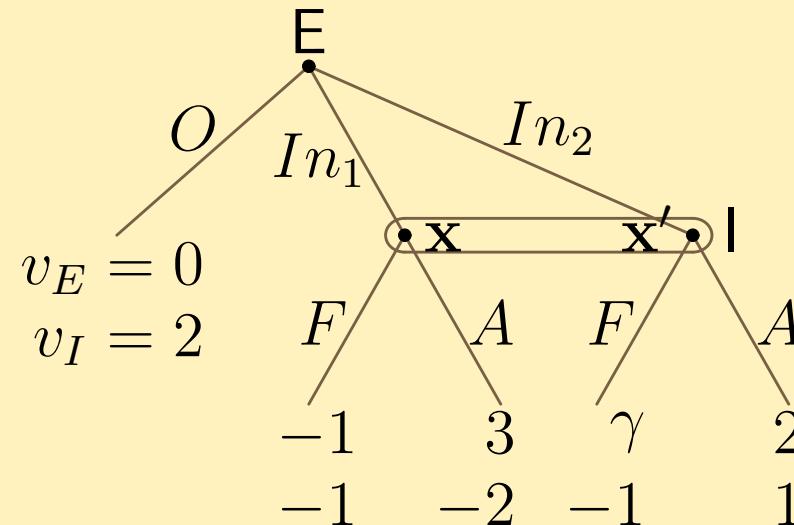
$$E[v_I(F, \sigma_E)|\mu] \gtrless E[v_I(A, \sigma_E)|\mu] \Leftrightarrow \mu(\mathbf{x}) \gtrless 2/3.$$

$(\gamma < 0)$:

$$\mu(\mathbf{x}) > 2/3 \Rightarrow \sigma_I(F) = 1 \Rightarrow \sigma_E(In_1) = \sigma_E(In_2) = 0.$$

Example

Example 9.C.3 ($\gamma > -1, \gamma \neq 0$)



$$E[v_I(F, \sigma_E)|\mu] \gtrless E[v_I(A, \sigma_E)|\mu] \Leftrightarrow \mu(\mathbf{x}) \gtrless 2/3.$$

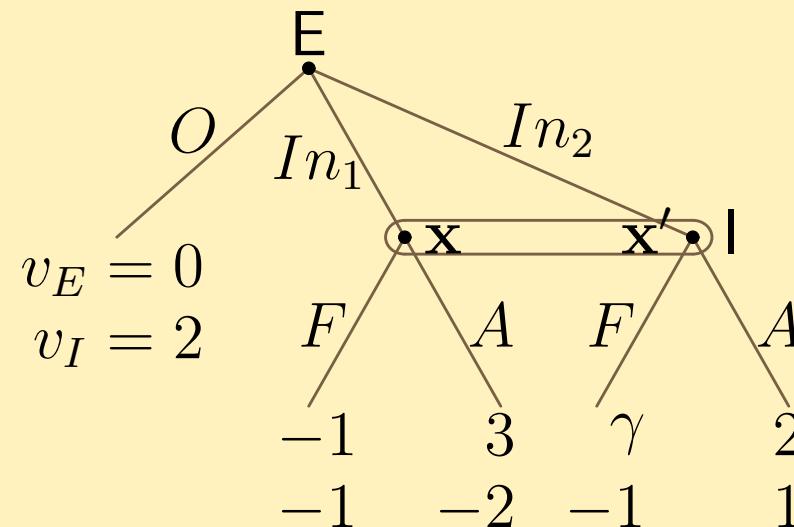
$(\gamma < 0)$:

$$\mu(\mathbf{x}) > 2/3 \Rightarrow \sigma_I(F) = 1 \Rightarrow \sigma_E(In_1) = \sigma_E(In_2) = 0.$$

* If $\gamma < 0$, $\sigma_E(O) = 1$ and $\sigma_I(F) = 1$ with $\mu(\mathbf{x}) \geq 2/3$.

Example

Example 9.C.3 ($\gamma > -1, \gamma \neq 0$)



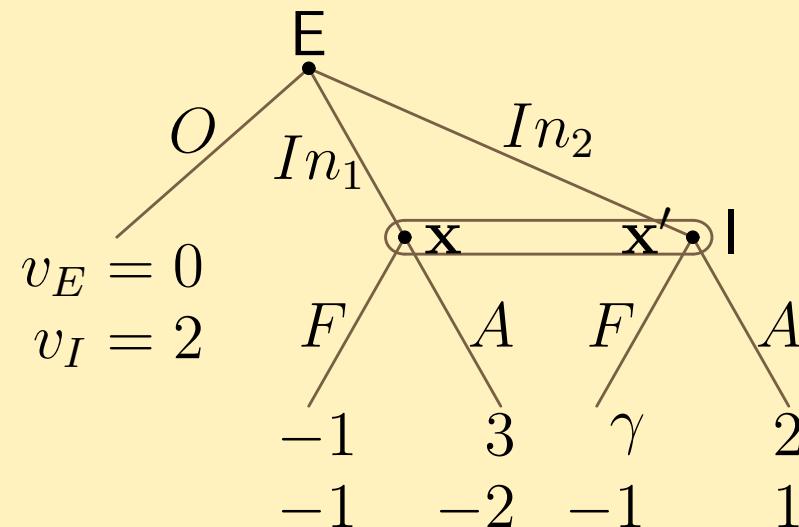
$$E[v_I(F, \sigma_E)|\mu] \gtrless E[v_I(A, \sigma_E)|\mu] \Leftrightarrow \mu(\mathbf{x}) \gtrless 2/3.$$

* If $\gamma < 0$, $\sigma_E(O) = 1$ and $\sigma_I(F) = 1$ with $\mu(\mathbf{x}) \geq 2/3$.

$$\mu(\mathbf{x}) < 2/3 \Rightarrow \sigma_I(F) = 0 \Rightarrow \sigma_E(In_1) = 1 \Rightarrow \mu(\mathbf{x}) = 1.$$

Example

Example 9.C.3 ($\gamma > -1, \gamma \neq 0$)

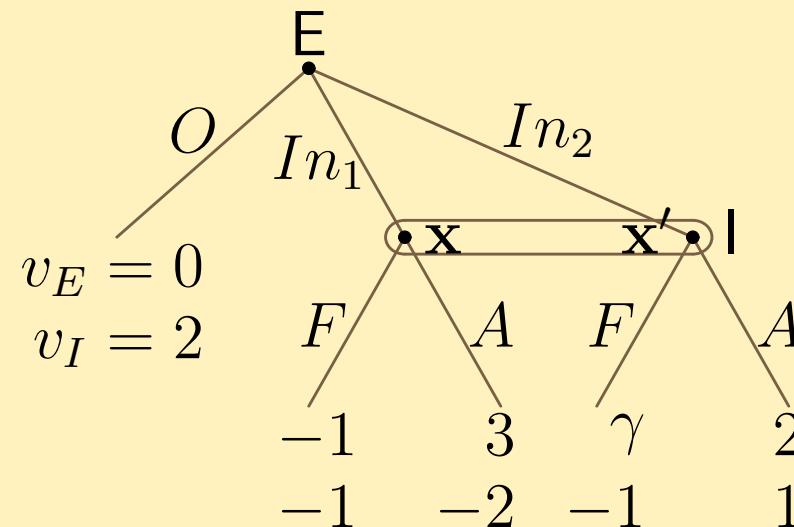


* If $\gamma < 0$, $\sigma_E(O) = 1$ and $\sigma_I(F) = 1$ with $\mu(\mathbf{x}) \geq 2/3$.

$\mu(\mathbf{x}) = 2/3$, then $E[v_E(\sigma_I, In_1)|\mu] = E[v_E(\sigma_I, In_2)|\mu]$.

Example

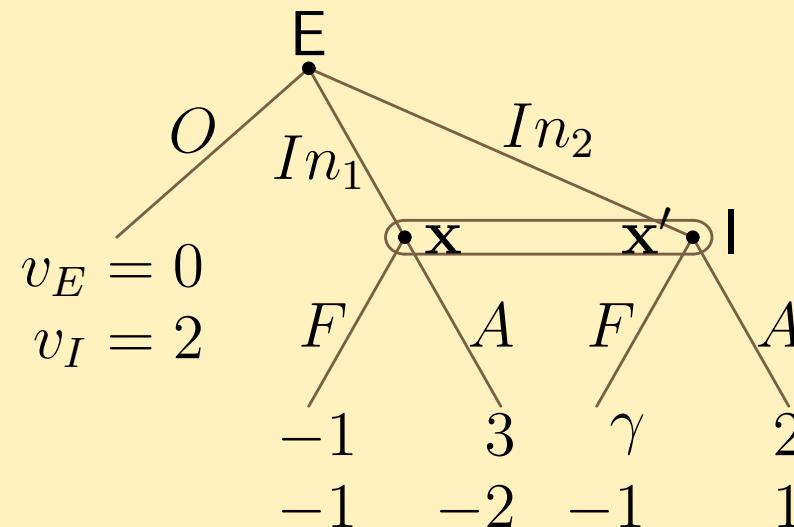
Example 9.C.3 ($\gamma > -1, \gamma \neq 0$)



- * If $\gamma < 0$, $\sigma_E(O) = 1$ and $\sigma_I(F) = 1$ with $\mu(\mathbf{x}) \geq 2/3$.
 $\mu(\mathbf{x}) = 2/3$, then $E[v_E(\sigma_I, In_1)|\mu] = E[v_E(\sigma_I, In_2)|\mu]$.
- $\sigma_I(F) \times (-1) + (1 - \sigma_I(F)) \times 3 = \sigma_I(F) \times \gamma + (1 - \sigma_I(F)) \times 2$.

Example

Example 9.C.3 ($\gamma > -1, \gamma \neq 0$)



* If $\gamma < 0$, $\sigma_E(O) = 1$ and $\sigma_I(F) = 1$ with $\mu(\mathbf{x}) \geq 2/3$.

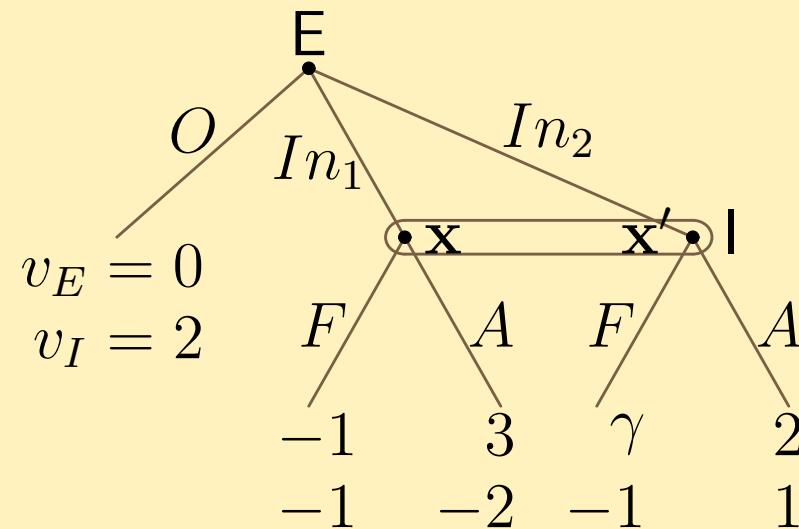
$$\sigma_I(F) \times (-1) + (1 - \sigma_I(F)) \times 3 = \sigma_I(F) \times \gamma + (1 - \sigma_I(F)) \times 2.$$

Solving it wrt $\sigma_I(F)$, we obtain

$$\sigma_I(F) = 1/(\gamma + 2), \quad E[v_E(\sigma_I, In_1) | \mu] = (3\gamma + 2)/(\gamma + 2).$$

Example

Example 9.C.3 ($\gamma > -1, \gamma \neq 0$)



- * If $\gamma < 0$, $\sigma_E(O) = 1$ and $\sigma_I(F) = 1$ with $\mu(\mathbf{x}) \geq 2/3$.
- $$\sigma_I(F) \times (-1) + (1 - \sigma_I(F)) \times 3 = \sigma_I(F) \times \gamma + (1 - \sigma_I(F)) \times 2.$$
- $$\sigma_I(F) = 1/(\gamma + 2), E[v_E(\sigma_I, In_1) | \mu] = (3\gamma + 2)/(\gamma + 2).$$
- * If $\gamma \geq -2/3$, $\sigma_E(O) = 0$, $\sigma_E(In_1) = 2/3$, $\sigma_E(In_2) = 1/3$.