
Chapter 13 (x13C,D): Signaling, and

S
reening in Mas-Colell et al.

Chapter 16: Limit pri
ing in Tadelis
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n Signaling (x13.C in MWG)

n S
reening (x13.D in MWG)

n Limit pri
ing (x16.2 in Tadelis)

A slightly generalized version based on Belle
amme and

Peitz (2010)
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x13.C Signaling

Basi
 assumptions

1. High type workers obtain degrees with low 
osts.

2. Low type workers obtain degrees with high 
osts.

3. Edu
ation has no e�e
t on workers' produ
tivity.

� = f�

H

; �

L

g, �

H

> �

L

> 0, � = Pr(� = �

H

) 2 (0; 1):

e: edu
ation level, C(e; �): type �'s 
ost to obtain e.
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Basi
 assumptions (
ont.)

8�, C(0; �) = 0.

8�, 8e, C

e

(e; �) > 0.

8�, 8e, C

ee

(e; �) > 0.

8e, C(e; �

H

) < C(e; �

L

).

C(e; �

H

)

e

C

C

e

(e; �

L

)

C

e

(e; �

H

)

C(e; �

L

)

8e, C

e

(e; �

H

) < C

e

(e; �

L

): single-
rossing property.

Reservation payo�: r(�

H

) = r(�

L

) = 0.

Workers' payo�: u(w; ej�) = w � C(e; �).

�(e): The �rm's belief that a worker is of type �

H

after it

observes e.
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Single-
rossing property (SCP) The indi�eren
e 
urves

of the two types 
ross at most on
e.

Indi�eren
e 
urve: w = �u+ C(e; �).

MRS:

dw

de

�
�
�
�

u:
onst:

= C

e

(e; �).

�MRS=�� = C

e�

(e; �) < 0.

u

H

u

L

e

w

C

e

(e; �

H

)

C

e

(e; �

L

)
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The timing stru
ture of the game

e

1

e

2

e

3

e

1

e

3

e

2

F

1

F

2

Worker

Nature

Worker

w

i

w

i

1� �

�

1. Nature determines the worker's ability, �

H

or �

L

.

2. Observing the ability, the worker determines e.

3. Observing e, ea
h �rm simultaneously o�ers w

i

.

4. Observing the wages, the worker de
ides whether to

work for a �rm, if so, whi
h one.
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A perfe
t Baysian equilibrium A PBE is a set of

strategies and a belief fun
tion �(e) 2 [0; 1℄ su
h that

1. The worker's strategy is optimal given the �rms'

strategies.

2. �(e) is derived from the worker's strategy using

Bayes' rule where possible.

3. The �rms' wage o�ers (w

1

(e); w

2

(e)) following ea
h e


onstitute a Nash equilibrium of the simultaneous

move wage o�er game in whi
h the probability that

the worker is of �

H

is �(e).
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Remark Let e

k

be type �

k

's 
hoi
e (k = H;L) in PBE.

1. In the �nal stage, a worker will a

ept

maxfw

1

(e); w

2

(e)g given his 
hoi
e e.

2. �(e

H

) = �=� = 1 if e

H

6= e

L

, and

�(e

H

) = � if e

H

= e

L

.

3. Given e, the �rms' wage o�ers are those of the

standard Bertrand model, so that

w

1

(e) = w

2

(e) = E(�; e) = �(e)�

H

+ (1� �(e))�

L

.
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standard Bertrand model, so that

w

1

(e) = w

2

(e) = E(�; e) = �(e)�

H

+ (1� �(e))�

L

.

(3) The �rms' wage o�ers (w

1

(e); w

2

(e)) following

ea
h e 
onstitute a Nash equilibrium of the

simultaneous move wage o�er game in whi
h the

probability that the worker is of �

H

is �(e).
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Two types of equilibria

1. Separating: e

�

(�

H

) 6= e

�

(�

L

).

2. Pooling: e

�

(�

H

) = e

�

(�

L

).

e

�

(�) denotes an edu
ation 
hoi
e fun
tion in a PBE.

w

�

(e) denotes a wage o�er fun
tion in a PBE.
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Separating equilibria

Lemma 13.C.1 In any separating PBE,

w

�

(e

�

(�

H

)) = �

H

and w

�

(e

�

(�

L

)) = �

L

:

If e

�

(�

H

) 6= e

�

(�

L

), �(e

�

(�

H

)) = 1 and �(e

�

(�

L

)) = 0.

Then,

w

�

(e

�

(�

H

)) = E(�je

�

(�

H

)) = �

H

and

w

�

(e

�

(�

L

)) = E(�je

�

(�

L

)) = �

L

:

Lemma 13.C.2 In any separating PBE, e

�

(�

L

) = 0.

Proof: By 
ontradi
tion. Suppose that e

�

(�

L

) > 0.

From Lemma 13.C.1, type �

L

gains �

L

� C(e

�

(�

L

); �

L

).

Choosing e

�

(�

L

) = 0 improves his/her gain.
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E�ort levels Let e

0

and e

1

be su
h that

�

L

= �

H

� C(e

0

; �

L

);

�

L

= �

H

� C(e

1

; �

H

):

Assume that

e

�
H

= e

�

(�

H

), e

�
L

= e

�

(�

L

) in PBE.

u

L

= �

L

u

H

= �

L

�

H

�

L

0

w

e

e

0

e

1

Fa
t 13.C.1 In any separating PBE, e

0

� e

�
H

� e

1

.

By Lemmas 1 and 2, w(e

�
L

) = �

L

, w(e

�
H

) = �

H

, e

�
L

= 0.

If e

�
H

< e

0

, �

L

< u

L

= �

H

� C(e

�
H

; �

L

): Type �

L


an be

better o� by 
hoosing e

�
H

.

If e

�
H

> e

1

, �

L

> u

H

= �

H

� C(e

�
H

; �

H

): Type �

H


an be

better o� by 
hoosing e

�
L

.
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Fa
t 13.C.2 In any PBE, �

�

is su
h that for all � 2 �,

e

�

(�)=argmax

e

fw

�

(e)� C(e; �)g

=argmax

e

f[�

�

(e)�

H

+ (1� �

�

(e))�

L

℄� C(e; �)g:

Fa
t 13.C.3 The strategies and beliefs des
ribed in

Remark, Lemmas 13.C.1 and 2, and Fa
ts 13.C.1 and 2


onstitute a separating PBE.

u

L

= �

L

u

H

= �

L

�

H

�

L

0

w

e

e

0

e

1

u

0
H

> �

L

w

�

(e)

e

�
H
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Ex. 1 �

L

= 1, �

H

= 2, C(e; �

L

) = e

2

, C(e; �

H

) = e

2

=4:

�

L

= �

H

� C(e

0

; �

L

) ! e

0

= 1;

�

L

= �

H

� C(e

1

; �

H

) ! e

1

= 2:

Let e

�
H

2 [1; 2℄, and let �

�

and w

�

(�) be su
h that

�

�

(e) =

�

1 if e � e

�
H

;

0 if e < e

�
H

:

w

�

(e) =

�

�

H

if e � e

�
H

;

�

L

if e < e

�
H

:

u

H

= �

L
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Fa
t 13.C.4 In any separating PBE, the pro�ts of the

�rms are zero, type L worker obtains �

L

, type H worker

obtains �

H

� C(e

�

(�

H

); �

H

).

Fa
t 13.C.5 The separating PBE with e

�

(�

H

) = e

0

Pareto-dominates any other separating equilibria.

u

L

= �

L

u

H

= �

L

�
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�

L

0
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e

e

0

e
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u

0
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�
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e

�
H
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Fa
t 13.C.6 Consider a separating PBE with

e

�

(�

H

) = e

�
H

. Let �w = �

H

�C(e

�
H

; �

H

), and let � be su
h

that ��

H

+ (1� �)�

L

= �w.

If � < �, the allo
ation without signals Pareto-dominates

the separating PBE.

u

H

= �

L

�

H

�

L

0

w

e

e

0

e

1

u

0
H

= �w

e

�
H

u

L

�w

E(�)
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Pooling e

�

= e

�

(�

L

) = e

�

(�

H

) in a pooling PBE.

Fa
t 13.C.7 In any pooling PBE,

w

�

(e

�

) = E(�) = ��

H

+ (1� �)�

L

:

Fa
t 13.C.8 In any pooling PBE with e

�

= e

�

(�

L

),

the pro�ts of the �rms are zero,

type L worker obtains E(�)� C(e

�

; �

L

),

type H worker obtains E(�)� C(e

�

; �

H

).

Fa
t 13.C.9 In any pooling PBE with e

�

= e

�

(�

L

),

0 � e

�

� e

0

where e

0

satis�es E(�)� C(e

0

; �

L

) = �

L

:

Proof: If e > e

0

, then type L 
hooses e = 0 be
ause

he/she gains at least �

L

.
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Fa
t 13.C.10 The strategies and beliefs des
ribed in

Remark of def. of PBE, Fa
ts 13.C.2, 7, and 9 
onstitute

a pooling PBE.

u

H

= �

L

�

H

�

L

0

w

e

e

0

u

0
H

e

�

u

L

= �

L

E(�)
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�

(e)
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Ex. 2 �

L

= 1, �

H

= 2, C(e; �

L

) = e

2

, C(e; �

H

) = e

2

=4;

� = 1=2.

E(�) = 1� (1=2) + 2� (1=2) = 3=2:

�

L

= E(�)� C(e

0

; �

L

) ! e

0

=

p

2=2:

Let e

�

2 [0;

p

2=2℄. Let �

�

and w

�

be su
h that

�

�

(e) =

�

� if e � e

�

;

0 if e < e

�

:

w

�

(e) =

�

E(�) if e � e

�

;

�

L

if e < e

�

:

u

H
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L

�

H

�

L
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e
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0
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0
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�
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Multiple equilibria and equilibrium re�nement

Intuitive 
riterion (Cho and Kreps (1987)).

u

L

= �

L

u

H

= �

L

�

H

�

L

0

w

e

e

0

e

1

u

0
H

> �

L

w

�

(e)

e

�
H

Consider a separating PBE in the

�gure. If type L 
hooses e

0

2

(e

0

; e

H

), he/she will be worse o�

than 
hoosing e = 0, regardless

of the belief.
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Intuitive 
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�gure. If type L 
hooses e

0

2

(e

0

; e

H

), he/she will be worse o�

than 
hoosing e = 0, regardless

of the belief.

Type L will never 
hoose e > e

0

.

For e 2 (e

0

; e

1

), �(e) 2 [0; 1) is not reasonable.

So, �(e) = 1 for all e 2 (e

0

; e

1

).
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Multiple equilibria and equilibrium re�nement

Intuitive 
riterion (Cho and Kreps (1987)).
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than 
hoosing e = 0, regardless

of the belief.

Type L will never 
hoose e > e
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For e 2 (e

0

; e

1

), �(e) 2 [0; 1) is not reasonable.

So, �(e) = 1 for all e 2 (e

0

; e

1

).

Type H will be better of by 
hoosing e

0

2 (e

0

; e

�
H

).

Any separating PBE with e

�
H

> e

0

is not sustained.
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x13.D S
reening

Basi
 assumptions As in Se
tion 13.C,

1. Two types of workers �

L

and �

H

(�

H

> �

L

> 0),

where � = Pr(� = �

H

) 2 (0; 1):

2. The reservation wage of ea
h worker is zero

(r(�

H

) = r(�

L

) = 0).

3. Jobs might di�er in the \task level" required of the

worker.

To simplify the analysis, assume that higher task

levels add nothing to the output of the worker.

The output of a type � is � regardless of the task.
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Basi
 assumptions (
ont.)

8�, 
(0; �) = 0.

8�, 8t, 


t

(e; �) > 0.

8�, 8t, 


tt

(e; �) > 0.

8t, 
(e; �

H

) < 
(e; �

L

).


(t; �

H

)

t







t

(t; �

L

)




t

(t; �

H

)


(t; �

L

)

8t, 


t

(e; �

H

) < 


t

(t; �

L

): single-
rossing property.

Workers' payo�: u(w; tj�) = w � 
(t; �).
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Timing We 
onsider the following two stage game.

1. Two �rms simultaneously announ
e sets of o�ered


ontra
ts. A 
ontra
t is a pair (w; t).

2. Given the o�ers, ea
h type worker 
hooses whether to

a

ept a 
ontra
t and, if so, whi
h one.

Proposition 13.D.1 In any SPNE of the s
reening game

with observable worker types (
omplete information


ase), a type �

i

worker a

epts 
ontra
t (w

�

i

; t

�
i

) = (�

i

; 0),

and �rms earn zero pro�ts.

Intuition: Bertrand 
ompetition between the �rms.
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In
omplete information Types are not observable.

Lemma 13.D.1 In any equilibrium, both �rms must earn

zero pro�ts.

Lemma 13.D.2 No pooling equilibria exist.

Proof By 
ontradi
tion.

(w

p

; t

p

) is a pooling equilibrium


ontra
t. By Lemma 13.D.1,

(w

p

; t

p

) lies on the break-even

line (see Figure). Given the 
on-

tra
t, a �rm earns a positive

pro�t by o�ering a 
ontra
t on

the shaded area.

t

w

�

H

�

L

E[�℄

u

L

u

H

(w

p

; t

p

)
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(w

j

; t

j

): a 
ontra
t signed by j workers (j = H;L).

Lemma 13.D.3 In a separating equilibrium, the 
ontra
ts

(w

H

; t

H

) and (w

L

; t

L

) yield zero pro�ts. That is,

w

H

= �

H

and w

L

= �

L

.

Lemma 13.D.4 In any separating equilibrium, L workers

a

ept (�

L

; 0).

t

w

�

H

�

L

u

L

u

H

(w

H

; t

H

)

(w

L

; t

L

) for L

( ~w;

~

t) for H

t

w

�

H

�

L

u

L

u

H

(w

H

; t

H

)

(�

L

; t

0
L

)

( ~w;

~

t)
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; 0).

t

w

�

H

�

L

u

L

u

H

(w

H

; t

H

)

(w

L

; t

L

) for L

( ~w;

~

t) for H

t

w

�

H

�

L

u

L

u

H

(w

H

; t

H

)

(�

L

; t

0
L

)

( ~w;

~

t)
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Lemma 13.D.5 In any separating equilibrium, H workers

a

ept (�

H

;

^

t

H

) su
h that

�

H

� 
(

^

t

H

; �

L

) = �

L

� 
(0; �

L

):

Intuition behind the lemma By Lemmas 13.D.3 and

13.D.4, (w

L

; t

L

) = (�

L

; 0) and w

H

= �

H

.

If t

H

>

^

t

H

, a �rm 
an o�er a more favorable 
ontra
t for

H workers.

t

w

�

H

�

L

u

L

u

H

(w

H

; t

H

)

(�

L

; 0)

( ~w;

~

t)

t

w

�

H

�

L

u

L

u

H

(w

H

; t

H

)

(�

L
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H

>

^

t

H
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t for
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t

w

�
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�
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u

L

u

H

(w

H
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H
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L
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~
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w
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�

L
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L
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H
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L
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L
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L

; t

L

) = (�

L

; 0) and w

H

= �

H

.

t

H

must be at least as large as

^

t

H

(no mimi
).

If t

H

>

^

t

H

, a �rm 
an o�er a more favorable 
ontra
t for

H workers.

t

w

�

H

�

L

u

L

u

H
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H
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H

)
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L
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~
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L
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H
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�
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L

) = (�
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= �
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>

^

t

H
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an o�er a more favorable 
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t for
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t
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�
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�
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L
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Proposition 13.D.2 In any SPNE of the s
reening game,

L workers a

ept (�

L

; 0), and H workers a

ept (�

H

;

^

t

H

)

su
h that �

H

� 
(

^

t

H

; �

L

) = �

L

� 
(0; �

L

):

Remark This equilibrium is not always sustainable.
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Limit pri
ing One in
umbent and one potential entrant

exist. The in
umbent 
an set a low pri
e in order to avoid

or delay entry.

The setting Two-period Cournot 
omp. with

P (Q) = 1�Q.

t = 0 The 
ost of �rm 1 is realized.


 = 


H

with probability � or


 = 


L

= 0 with probability 1� � (


L

< 


H

< 1=2).

t = 1 Learning its 
ost, �rm 1 sets its quantity q

1

(
).

t = 2 The entrant with 
ost 


L

de
ides

whether to enter and pay the �xed 
ost e.

" = 1 means entry and " = 0 means no entry.

The entry strategy is denoted by "(p

1

(q

1

)).

After the entry, the entrant learns the in
umbent's 
ost,

and they 
ompete in quantity at period 2.
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The setting 
 = 


H

with prob. � or 
 = 


L

= 0 with

prob. 1� �, 0 = 


L

< 


H

< 1=2. The in
umbent sets

q

1

(
). The entry strategy is denoted by "(p

1

(q

1

)).

The se
ond stage If no entry o

urs, the in
umbent sets

q

2I

(
; " = 0) = (1� 
)=2 (the monopoly quantity when its

marginal 
ost is 
).

1. The in
umbent sets q

1

(
) = 1=2 whi
h is the

single-period monopoly output of 
 = 


L

.

2. The entrant's strategy is "(p

1

(q

1

)) = 1 if p

1

> 1=2

and "(p

1

(q

1

)) = 0 if p

1

� 1=2. (Belief: 
 = 


H

with

probability 1 if p

1

> 1=2 and 
 = 


H

with probability

� if p

1

� 1=2.)

The in
umbent sets q

1

= 1=2 if �

I

(


H

; 0) > �

I

(


H

; 1),

that is,

(1� 2


H

)=4 + (1� 


H

)

2

=4 > (1� 


H

)

2

=4 + (1� 2


H

)

2

=9:

For any 


H

, the in
umbent with 
 = 


H

sets q

1

= 1=2 that

is the monopoly quantity of the in
umbent with 
 = 0.
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The setting 
 = 


H

with prob. �

The se
ond stage If no entry o

urs, the in
umbent sets

q

2I

(
; " = 0) = (1� 
)=2.

If the entry o

urs, the �rms set

q

2I

(


H

; " = 1) = (1� 2


H

)=3; q

2E

(


H

; " = 1) = (1 + 


H

)=3;

q

2I

(


L

; " = 1) = 1=3; q

2E

(


L

; " = 1) = 1=3:

1. The in
umbent sets q

1

(
) = 1=2 whi
h is the

single-period monopoly output of 
 = 


L

.

2. The entrant's strategy is "(p

1

(q

1

)) = 1 if p

1

> 1=2

and "(p

1

(q

1

)) = 0 if p

1

� 1=2. (Belief: 
 = 


H

with

probability 1 if p

1

> 1=2 and 
 = 


H

with probability

� if p

1

� 1=2.)

The in
umbent sets q

1

= 1=2 if �

I

(


H

; 0) > �

I

(


H

; 1),

that is,

(1� 2


H

)=4 + (1� 


H

)

2

=4 > (1� 


H

)

2

=4 + (1� 2


H

)

2

=9:

For any 


H

, the in
umbent with 
 = 


H

sets q

1

= 1=2 that

is the monopoly quantity of the in
umbent with 
 = 0.
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The setting 
 = 


H

with prob. �

The se
ond stage If no entry o

urs, the in
umbent sets

q

2I

(
; " = 0) = (1� 
)=2.

If the entry o

urs, the �rms set

q

2I

(


H

; " = 1) = (1� 2


H

)=3; q

2E

(


H

; " = 1) = (1 + 


H

)=3;

q

2I

(


L

; " = 1) = 1=3; q

2E

(


L

; " = 1) = 1=3:

Complete information If the entrant knows the true 
ost of

the in
umbent before its entry,

�

E

(


H

; 1) = (1 + 


H

)

2

=9; �

E

(


L

; 1) = 1=9:

We 
onsider the 
ase in whi
h �

E

(


L

; 1) < e < �

E

(


H

; 1).

1. The in
umbent sets q

1

(
) = 1=2 whi
h is the

single-period monopoly output of 
 = 


L

.

2. The entrant's strategy is "(p

1

(q

1

)) = 1 if p

1

> 1=2

and "(p

1

(q

1

)) = 0 if p

1

� 1=2. (Belief: 
 = 


H

with

probability 1 if p

1

> 1=2 and 
 = 


H

with probability

� if p

1

� 1=2.)

The in
umbent sets q

1

= 1=2 if �

I

(


H

; 0) > �

I

(


H

; 1),

that is,

(1� 2


H

)=4 + (1� 


H

)

2

=4 > (1� 


H

)

2

=4 + (1� 2


H

)

2

=9:

For any 


H

, the in
umbent with 
 = 


H

sets q

1

= 1=2 that

is the monopoly quantity of the in
umbent with 
 = 0.
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The setting �

E

(


L

; 1) < e < �

E

(


H

; 1).

The se
ond stage If no entry o

urs, the in
umbent sets

q

2I

(
; " = 0) = (1� 
)=2.

If the entry o

urs, the �rms set

q

2I

(


H

; " = 1) = (1� 2


H

)=3; q

2E

(


H

; " = 1) = (1 + 


H

)=3;

q

2I

(


L

; " = 1) = 1=3; q

2E

(


L

; " = 1) = 1=3:

Pooling Eq. The entrant uses prior beliefs. Its expe
ted

pro�t is

��

E

(


H

; 1) + (1� �)�

E

(


L

; 1):

If e is larger than this expe
ted pro�t, an uninformed

entrant does not enter. The expe
ted pro�t is smaller

than �

E

(


H

; 1).

1. The in
umbent sets q

1

(
) = 1=2 whi
h is the

single-period monopoly output of 
 = 


L

.

2. The entrant's strategy is "(p

1

(q

1

)) = 1 if p

1

> 1=2

and "(p

1

(q

1

)) = 0 if p

1

� 1=2. (Belief: 
 = 


H

with

probability 1 if p

1

> 1=2 and 
 = 


H

with probability

� if p

1

� 1=2.)

The in
umbent sets q

1

= 1=2 if �

I

(


H

; 0) > �

I

(


H

; 1),

that is,

(1� 2


H

)=4 + (1� 


H

)

2

=4 > (1� 


H

)

2

=4 + (1� 2


H

)

2

=9:

For any 


H

, the in
umbent with 
 = 


H

sets q

1

= 1=2 that

is the monopoly quantity of the in
umbent with 
 = 0.
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The setting �

E

(


L

; 1) < e < �

E

(


H

; 1).

Pooling Eq. An uninformed entrant does not enter i�

��

E

(


H

; 1) + (1� �)�

E

(


L

; 1) < e:

1. The in
umbent sets q

1

(
) = 1=2 whi
h is the

single-period monopoly output of 
 = 


L

.

2. The entrant's strategy is "(p

1

(q

1

)) = 1 if p

1

> 1=2

and "(p

1

(q

1

)) = 0 if p

1

� 1=2. (Belief: 
 = 


H

with

probability 1 if p

1

> 1=2 and 
 = 


H

with probability

� if p

1

� 1=2.)

The in
umbent sets q

1

= 1=2 if �

I

(


H

; 0) > �

I

(


H

; 1),

that is,

(1� 2


H

)=4 + (1� 


H

)

2

=4 > (1� 


H

)

2

=4 + (1� 2


H

)

2

=9:

For any 


H

, the in
umbent with 
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H

sets q

1

= 1=2 that

is the monopoly quantity of the in
umbent with 
 = 0.
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)) = 0 if p

1

� 1=2. (Belief: 
 = 


H
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1
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 = 


H
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� if p

1
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= 1=2 if �
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1

(
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h is the

single-period monopoly output of 
 = 


L

.
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1
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1

)) = 1 if p

1

> 1=2

and "(p

1

(q

1

)) = 0 if p

1

� 1=2.

(Belief: 
 = 


H
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probability 1 if p

1

> 1=2 and 
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H

with probability

� if p

1

� 1=2.)

The in
umbent sets q

1

= 1=2 if �

I

(


H

; 0) > �

I
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H
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that is,
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H

)=4 + (1� 


H

)

2

=4 > (1� 
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)
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=9:
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sets q
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= 1=2 that

is the monopoly quantity of the in
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E
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L
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1. The in
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1

(
) = 1=2 whi
h is the

single-period monopoly output of 
 = 


L

.

2. The entrant's strategy is "(p

1
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1

)) = 1 if p

1

> 1=2

and "(p

1

(q

1

)) = 0 if p

1

� 1=2. (Belief: 
 = 


H
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