

Chapter 13 (§13C,D): Signaling, and Screening in Mas-Colell et al.

Chapter 16: Limit pricing in Tadelis

- Signaling (§13.C in MWG)
- Screening (§13.D in MWG)
- Limit pricing (§16.2 in Tadelis)
A slightly generalized version based on Belleflamme and Peitz (2010)

Signaling game

§13.C Signaling

Basic assumptions

1. High type workers obtain degrees with low costs.
2. Low type workers obtain degrees with high costs.
3. Education has no effect on workers' productivity.

$$\Theta = \{\theta_H, \theta_L\}, \theta_H > \theta_L > 0, \lambda = \Pr(\theta = \theta_H) \in (0, 1).$$

e : education level, $C(e, \theta)$: type θ 's cost to obtain e .

Signaling game

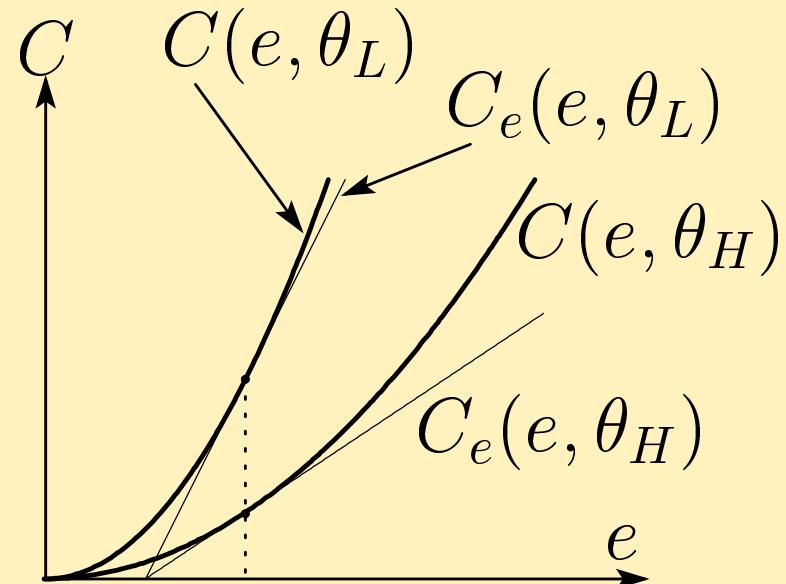
Basic assumptions (cont.)

$$\forall \theta, C(0, \theta) = 0.$$

$$\forall \theta, \forall e, C_e(e, \theta) > 0.$$

$$\forall \theta, \forall e, C_{ee}(e, \theta) > 0.$$

$$\forall e, C(e, \theta_H) < C(e, \theta_L).$$



$\forall e, C_e(e, \theta_H) < C_e(e, \theta_L)$: **single-crossing property**.

Reservation payoff: $r(\theta_H) = r(\theta_L) = 0$.

Workers' payoff: $u(w, e | \theta) = w - C(e, \theta)$.

$\mu(e)$: The firm's belief that a worker is of type θ_H after it observes e .

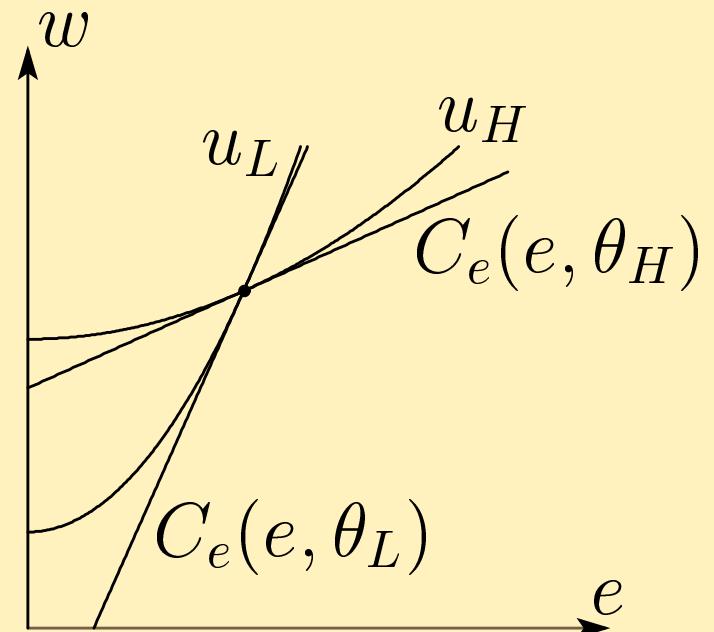
Signaling game

Single-crossing property (SCP) The indifference curves of the two types cross at most once.

Indifference curve: $w = \bar{u} + C(e, \theta)$.

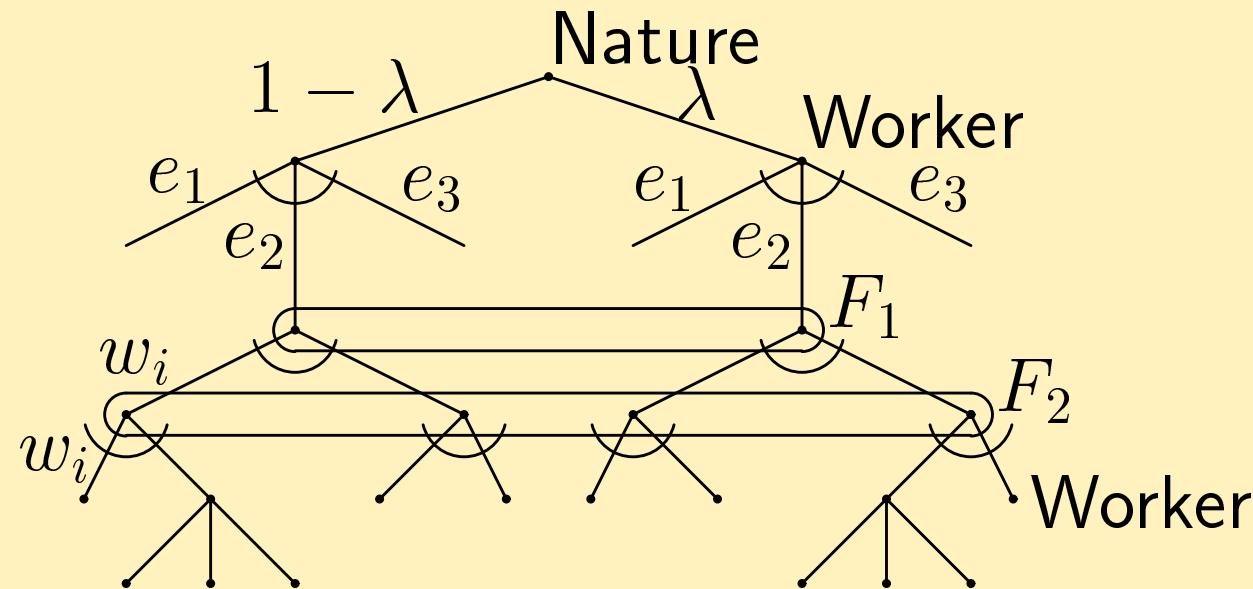
MRS: $\frac{dw}{de} \bigg|_{u:const.} = C_e(e, \theta)$.

$\partial \text{MRS} / \partial \theta = C_{e\theta}(e, \theta) < 0$.



Signaling game

The timing structure of the game



1. Nature determines the worker's ability, θ_H or θ_L .
2. Observing the ability, the worker determines e .
3. Observing e , each firm simultaneously offers w_i .
4. Observing the wages, the worker decides whether to work for a firm, if so, which one.

Signaling game

A perfect Bayesian equilibrium A PBE is a set of strategies and a belief function $\mu(e) \in [0, 1]$ such that

Signaling game

A perfect Bayesian equilibrium A PBE is a set of strategies and a belief function $\mu(e) \in [0, 1]$ such that

1. The worker's strategy is optimal given the firms' strategies.

Signaling game

A perfect Bayesian equilibrium A PBE is a set of strategies and a belief function $\mu(e) \in [0, 1]$ such that

1. The worker's strategy is optimal given the firms' strategies.
2. $\mu(e)$ is derived from the worker's strategy using Bayes' rule where possible.

Signaling game

A perfect Bayesian equilibrium A PBE is a set of strategies and a belief function $\mu(e) \in [0, 1]$ such that

1. The worker's strategy is optimal given the firms' strategies.
2. $\mu(e)$ is derived from the worker's strategy using Bayes' rule where possible.
3. The firms' wage offers $(w_1(e), w_2(e))$ following each e constitute a Nash equilibrium of the simultaneous move wage offer game in which the probability that the worker is of θ_H is $\mu(e)$.

Signaling game

Remark Let e_k be type θ_k 's choice ($k = H, L$) in PBE.

Signaling game

Remark Let e_k be type θ_k 's choice ($k = H, L$) in PBE.

1. In the final stage, a worker will accept $\max\{w_1(e), w_2(e)\}$ given his choice e .
 - (1) The worker's strategy is optimal given the firms' strategies.

Signaling game

Remark Let e_k be type θ_k 's choice ($k = H, L$) in PBE.

1. In the final stage, a worker will accept $\max\{w_1(e), w_2(e)\}$ given his choice e .
2. $\mu(e_H) = \lambda/\lambda = 1$ if $e_H \neq e_L$, and
 $\mu(e_H) = \lambda$ if $e_H = e_L$.
(2) $\mu(e)$ is derived from the worker's strategy using Bayes' rule where possible.

Signaling game

Remark Let e_k be type θ_k 's choice ($k = H, L$) in PBE.

1. In the final stage, a worker will accept $\max\{w_1(e), w_2(e)\}$ given his choice e .
2. $\mu(e_H) = \lambda/\lambda = 1$ if $e_H \neq e_L$, and $\mu(e_H) = \lambda$ if $e_H = e_L$.
3. Given e , the firms' wage offers are those of the standard Bertrand model, so that

$$w_1(e) = w_2(e) = E(\theta; e) = \mu(e)\theta_H + (1 - \mu(e))\theta_L.$$

(3) The firms' wage offers $(w_1(e), w_2(e))$ following each e constitute a Nash equilibrium of the simultaneous move wage offer game in which the probability that the worker is of θ_H is $\mu(e)$.

Equilibria

Two types of equilibria

1. Separating: $e^*(\theta_H) \neq e^*(\theta_L)$.
2. Pooling: $e^*(\theta_H) = e^*(\theta_L)$.

$e^*(\theta)$ denotes an education choice function in a PBE.

$w^*(e)$ denotes a wage offer function in a PBE.

Separating equilibrium

Separating equilibria

Lemma 13.C.1 In any separating PBE,

$$w^*(e^*(\theta_H)) = \theta_H \text{ and } w^*(e^*(\theta_L)) = \theta_L.$$

Separating equilibrium

Separating equilibria

Lemma 13.C.1 In any separating PBE,

$$w^*(e^*(\theta_H)) = \theta_H \text{ and } w^*(e^*(\theta_L)) = \theta_L.$$

If $e^*(\theta_H) \neq e^*(\theta_L)$, $\mu(e^*(\theta_H)) = 1$ and $\mu(e^*(\theta_L)) = 0$.

Separating equilibrium

Separating equilibria

Lemma 13.C.1 In any separating PBE,

$$w^*(e^*(\theta_H)) = \theta_H \text{ and } w^*(e^*(\theta_L)) = \theta_L.$$

If $e^*(\theta_H) \neq e^*(\theta_L)$, $\mu(e^*(\theta_H)) = 1$ and $\mu(e^*(\theta_L)) = 0$.

Then,

$$w^*(e^*(\theta_H)) = E(\theta|e^*(\theta_H)) = \theta_H \text{ and}$$

$$w^*(e^*(\theta_L)) = E(\theta|e^*(\theta_L)) = \theta_L.$$

Lemma 13.C.2 In any separating PBE, $e^*(\theta_L) = 0$.

Proof: By contradiction. Suppose that $e^*(\theta_L) > 0$.

Separating equilibrium

Separating equilibria

Lemma 13.C.1 In any separating PBE,

$$w^*(e^*(\theta_H)) = \theta_H \text{ and } w^*(e^*(\theta_L)) = \theta_L.$$

If $e^*(\theta_H) \neq e^*(\theta_L)$, $\mu(e^*(\theta_H)) = 1$ and $\mu(e^*(\theta_L)) = 0$.

Then,

$$w^*(e^*(\theta_H)) = E(\theta|e^*(\theta_H)) = \theta_H \text{ and}$$

$$w^*(e^*(\theta_L)) = E(\theta|e^*(\theta_L)) = \theta_L.$$

Lemma 13.C.2 In any separating PBE, $e^*(\theta_L) = 0$.

Proof: By contradiction. Suppose that $e^*(\theta_L) > 0$.

From Lemma 13.C.1, type θ_L gains $\theta_L - C(e^*(\theta_L), \theta_L)$.

Separating equilibrium

Separating equilibria

Lemma 13.C.1 In any separating PBE,

$$w^*(e^*(\theta_H)) = \theta_H \text{ and } w^*(e^*(\theta_L)) = \theta_L.$$

If $e^*(\theta_H) \neq e^*(\theta_L)$, $\mu(e^*(\theta_H)) = 1$ and $\mu(e^*(\theta_L)) = 0$.

Then,

$$w^*(e^*(\theta_H)) = E(\theta|e^*(\theta_H)) = \theta_H \text{ and}$$

$$w^*(e^*(\theta_L)) = E(\theta|e^*(\theta_L)) = \theta_L.$$

Lemma 13.C.2 In any separating PBE, $e^*(\theta_L) = 0$.

Proof: By contradiction. Suppose that $e^*(\theta_L) > 0$.

From Lemma 13.C.1, type θ_L gains $\theta_L - C(e^*(\theta_L), \theta_L)$.

Choosing $e^*(\theta_L) = 0$ improves his/her gain.

Separating equilibrium

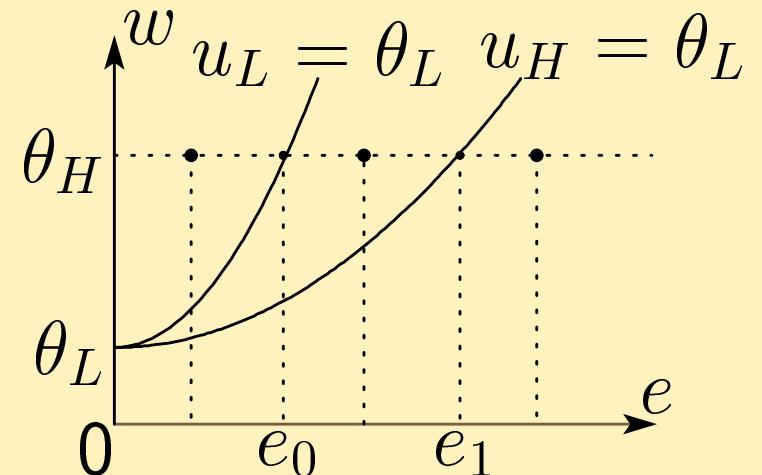
Effort levels Let e_0 and e_1 be such that

$$\theta_L = \theta_H - C(e_0, \theta_L),$$

$$\theta_L = \theta_H - C(e_1, \theta_H).$$

Assume that

$$e_H^* = e^*(\theta_H), \quad e_L^* = e^*(\theta_L) \text{ in PBE.}$$



Fact 13.C.1 In any separating PBE, $e_0 \leq e_H^* \leq e_1$.

Separating equilibrium

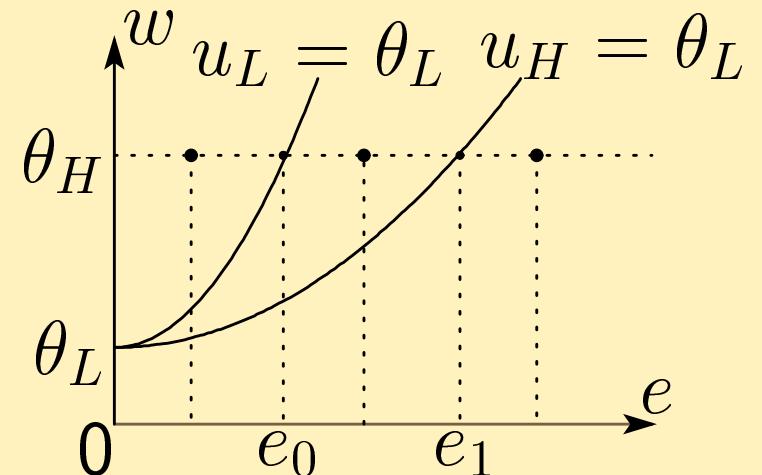
Effort levels Let e_0 and e_1 be such that

$$\theta_L = \theta_H - C(e_0, \theta_L),$$

$$\theta_L = \theta_H - C(e_1, \theta_H).$$

Assume that

$$e_H^* = e^*(\theta_H), \quad e_L^* = e^*(\theta_L) \text{ in PBE.}$$



Fact 13.C.1 In any separating PBE, $e_0 \leq e_H^* \leq e_1$.

By Lemmas 1 and 2, $w(e_L^*) = \theta_L$, $w(e_H^*) = \theta_H$, $e_L^* = 0$.

Separating equilibrium

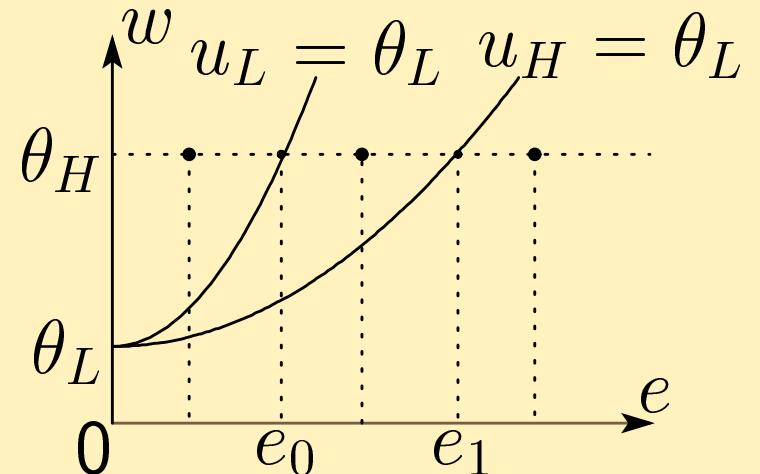
Effort levels Let e_0 and e_1 be such that

$$\theta_L = \theta_H - C(e_0, \theta_L),$$

$$\theta_L = \theta_H - C(e_1, \theta_H).$$

Assume that

$$e_H^* = e^*(\theta_H), \quad e_L^* = e^*(\theta_L) \text{ in PBE.}$$



Fact 13.C.1 In any separating PBE, $e_0 \leq e_H^* \leq e_1$.

By Lemmas 1 and 2, $w(e_L^*) = \theta_L$, $w(e_H^*) = \theta_H$, $e_L^* = 0$.

If $e_H^* < e_0$, $\theta_L < u_L = \theta_H - C(e_H^*, \theta_L)$. Type θ_L can be better off by choosing e_H^* .

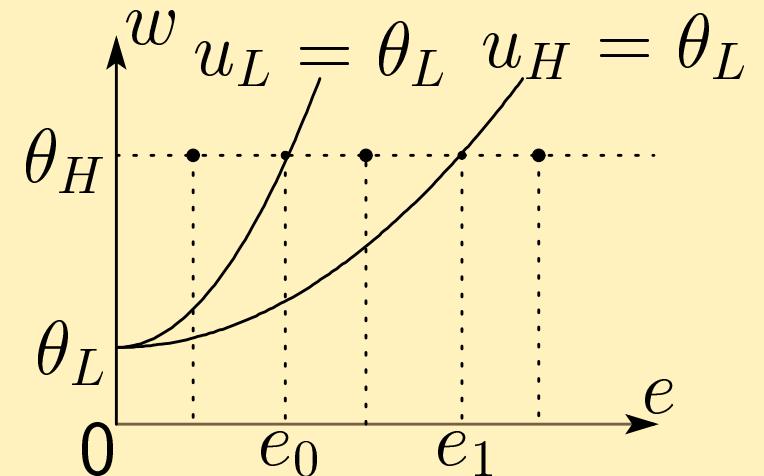
Separating equilibrium

Effort levels Let e_0 and e_1 be such that

$$\begin{aligned}\theta_L &= \theta_H - C(e_0, \theta_L), \\ \theta_L &= \theta_H - C(e_1, \theta_H).\end{aligned}$$

Assume that

$$e_H^* = e^*(\theta_H), \quad e_L^* = e^*(\theta_L) \text{ in PBE.}$$



Fact 13.C.1 In any separating PBE, $e_0 \leq e_H^* \leq e_1$.

By Lemmas 1 and 2, $w(e_L^*) = \theta_L$, $w(e_H^*) = \theta_H$, $e_L^* = 0$.

If $e_H^* < e_0$, $\theta_L < u_L = \theta_H - C(e_H^*, \theta_L)$. Type θ_L can be better off by choosing e_H^* .

If $e_H^* > e_1$, $\theta_L > u_H = \theta_H - C(e_H^*, \theta_H)$. Type θ_H can be better off by choosing e_L^* .

Separating equilibrium

Fact 13.C.2 In any PBE, μ^* is such that for all $\theta \in \Theta$,

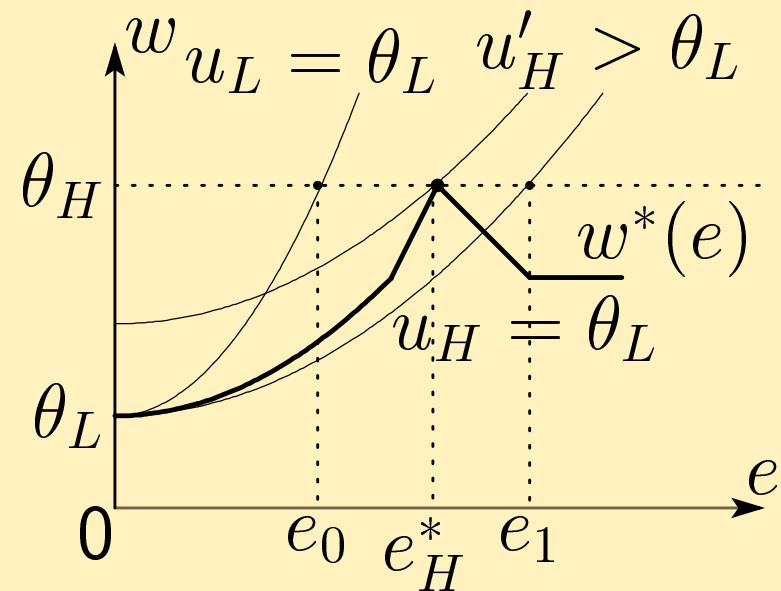
$$\begin{aligned} e^*(\theta) &= \arg \max_e \{w^*(e) - C(e, \theta)\} \\ &= \arg \max_e \{[\mu^*(e)\theta_H + (1 - \mu^*(e))\theta_L] - C(e, \theta)\}. \end{aligned}$$

Separating equilibrium

Fact 13.C.2 In any PBE, μ^* is such that for all $\theta \in \Theta$,

$$\begin{aligned} e^*(\theta) &= \arg \max_e \{w^*(e) - C(e, \theta)\} \\ &= \arg \max_e \{[\mu^*(e)\theta_H + (1 - \mu^*(e))\theta_L] - C(e, \theta)\}. \end{aligned}$$

Fact 13.C.3 The strategies and beliefs described in Remark, Lemmas 13.C.1 and 2, and Facts 13.C.1 and 2 constitute a separating PBE.



Separating equilibrium

Ex. 1 $\theta_L = 1, \theta_H = 2, C(e, \theta_L) = e^2, C(e, \theta_H) = e^2/4.$

Separating equilibrium

Ex. 1 $\theta_L = 1, \theta_H = 2, C(e, \theta_L) = e^2, C(e, \theta_H) = e^2/4.$

$$\theta_L = \theta_H - C(e_0, \theta_L) \rightarrow e_0 = 1,$$

$$\theta_L = \theta_H - C(e_1, \theta_H) \rightarrow e_1 = 2.$$

Separating equilibrium

Ex. 1 $\theta_L = 1, \theta_H = 2, C(e, \theta_L) = e^2, C(e, \theta_H) = e^2/4.$

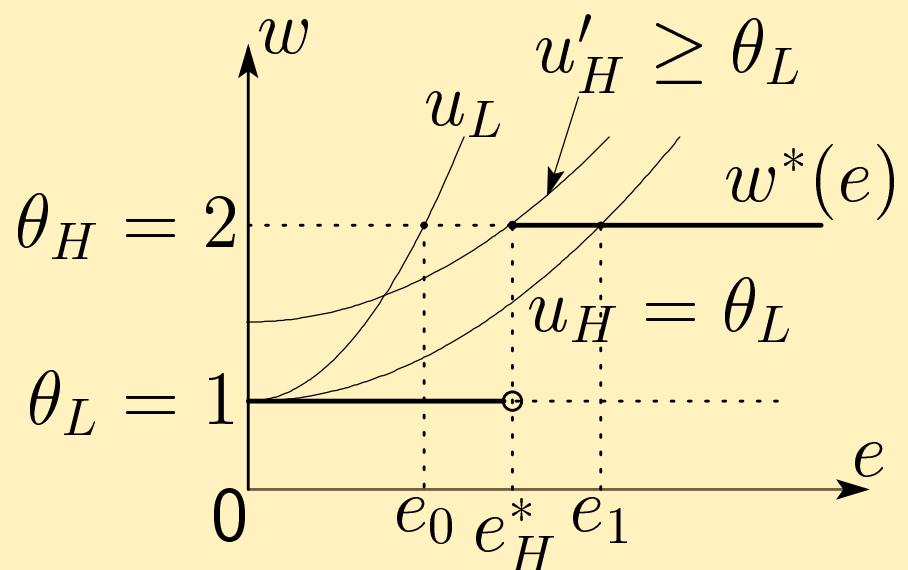
$$\theta_L = \theta_H - C(e_0, \theta_L) \rightarrow e_0 = 1,$$

$$\theta_L = \theta_H - C(e_1, \theta_H) \rightarrow e_1 = 2.$$

Let $e_H^* \in [1, 2]$, and let μ^* and $w^*(\cdot)$ be such that

$$\mu^*(e) = \begin{cases} 1 & \text{if } e \geq e_H^*, \\ 0 & \text{if } e < e_H^*. \end{cases}$$

$$w^*(e) = \begin{cases} \theta_H & \text{if } e \geq e_H^*, \\ \theta_L & \text{if } e < e_H^*. \end{cases}$$



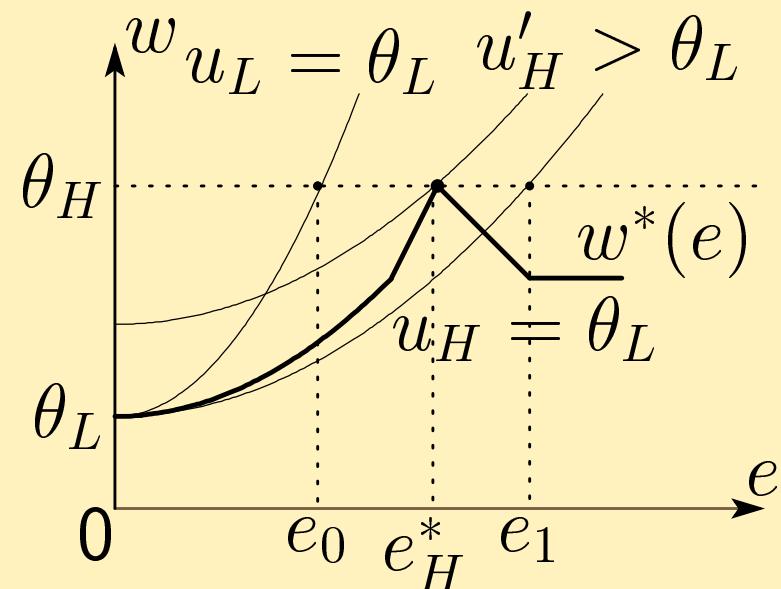
Separating equilibrium

Fact 13.C.4 In any separating PBE, the profits of the firms are zero, type L worker obtains θ_L , type H worker obtains $\theta_H - C(e^*(\theta_H), \theta_H)$.

Separating equilibrium

Fact 13.C.4 In any separating PBE, the profits of the firms are zero, type L worker obtains θ_L , type H worker obtains $\theta_H - C(e^*(\theta_H), \theta_H)$.

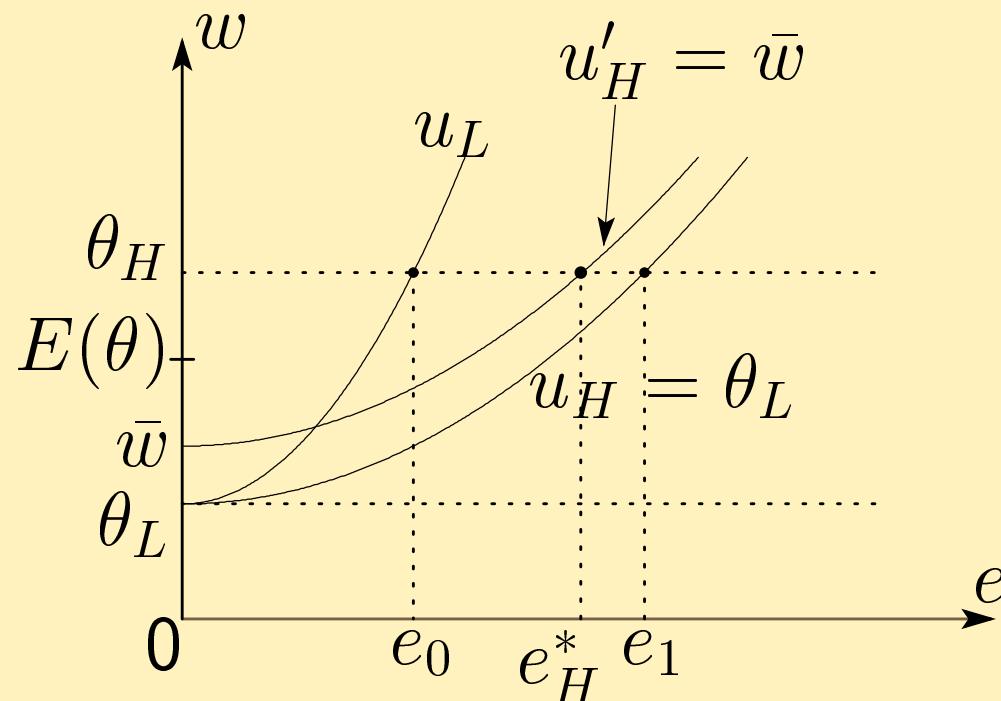
Fact 13.C.5 The separating PBE with $e^*(\theta_H) = e_0$ Pareto-dominates any other separating equilibria.



Separating equilibrium

Fact 13.C.6 Consider a separating PBE with $e^*(\theta_H) = e_H^*$. Let $\bar{w} = \theta_H - C(e_H^*, \theta_H)$, and let α be such that $\alpha\theta_H + (1 - \alpha)\theta_L = \bar{w}$.

If $\alpha < \lambda$, the allocation without signals Pareto-dominates the separating PBE.



Pooling equilibrium

Pooling $e^* = e^*(\theta_L) = e^*(\theta_H)$ in a pooling PBE.

Pooling equilibrium

Pooling $e^* = e^*(\theta_L) = e^*(\theta_H)$ in a pooling PBE.

Fact 13.C.7 In any pooling PBE,

$$w^*(e^*) = E(\theta) = \lambda\theta_H + (1 - \lambda)\theta_L.$$

Pooling equilibrium

Pooling $e^* = e^*(\theta_L) = e^*(\theta_H)$ in a pooling PBE.

Fact 13.C.7 In any pooling PBE,

$$w^*(e^*) = E(\theta) = \lambda\theta_H + (1 - \lambda)\theta_L.$$

Fact 13.C.8 In any pooling PBE with $e^* = e^*(\theta_L)$,

the profits of the firms are zero,

type L worker obtains $E(\theta) - C(e^*, \theta_L)$,

type H worker obtains $E(\theta) - C(e^*, \theta_H)$.

Pooling equilibrium

Pooling $e^* = e^*(\theta_L) = e^*(\theta_H)$ in a pooling PBE.

Fact 13.C.7 In any pooling PBE,

$$w^*(e^*) = E(\theta) = \lambda\theta_H + (1 - \lambda)\theta_L.$$

Fact 13.C.8 In any pooling PBE with $e^* = e^*(\theta_L)$,

the profits of the firms are zero,

type L worker obtains $E(\theta) - C(e^*, \theta_L)$,

type H worker obtains $E(\theta) - C(e^*, \theta_H)$.

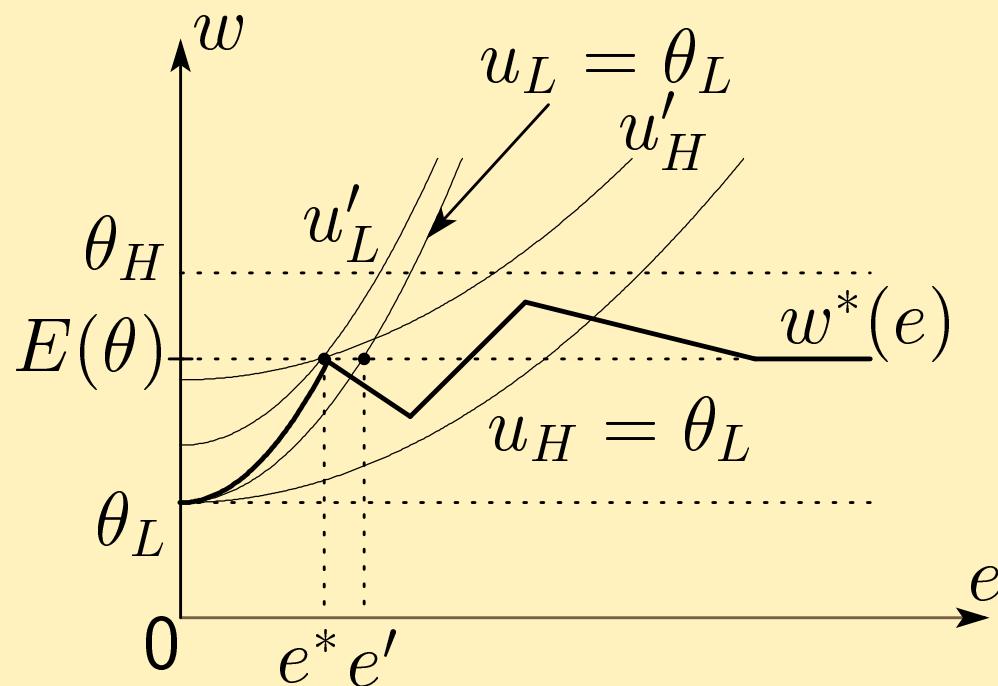
Fact 13.C.9 In any pooling PBE with $e^* = e^*(\theta_L)$,

$0 \leq e^* \leq e'$ where e' satisfies $E(\theta) - C(e', \theta_L) = \theta_L$.

Proof: If $e > e'$, then type L chooses $e = 0$ because he/she gains at least θ_L .

Pooling equilibrium

Fact 13.C.10 The strategies and beliefs described in Remark of def. of PBE, Facts 13.C.2, 7, and 9 constitute a pooling PBE.



Pooling equilibrium

Ex. 2 $\theta_L = 1, \theta_H = 2, C(e, \theta_L) = e^2, C(e, \theta_H) = e^2/4,$
 $\lambda = 1/2.$

Pooling equilibrium

Ex. 2 $\theta_L = 1, \theta_H = 2, C(e, \theta_L) = e^2, C(e, \theta_H) = e^2/4,$
 $\lambda = 1/2.$

$$E(\theta) = 1 \times (1/2) + 2 \times (1/2) = 3/2.$$

$$\theta_L = E(\theta) - C(e', \theta_L) \rightarrow e' = \sqrt{2}/2.$$

Pooling equilibrium

Ex. 2 $\theta_L = 1, \theta_H = 2, C(e, \theta_L) = e^2, C(e, \theta_H) = e^2/4, \lambda = 1/2.$

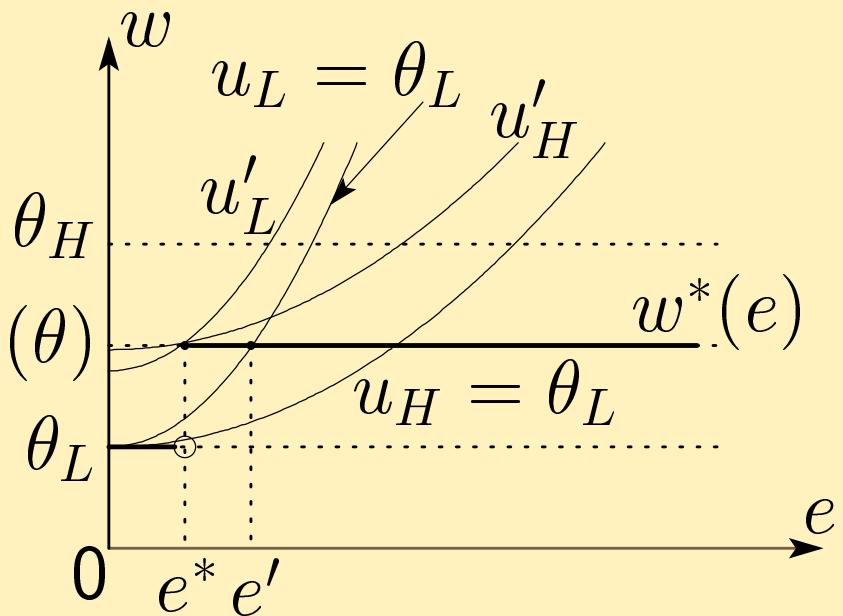
$$E(\theta) = 1 \times (1/2) + 2 \times (1/2) = 3/2.$$

$$\theta_L = E(\theta) - C(e', \theta_L) \rightarrow e' = \sqrt{2}/2.$$

Let $e^* \in [0, \sqrt{2}/2]$. Let μ^* and w^* be such that

$$\mu^*(e) = \begin{cases} \lambda & \text{if } e \geq e^*, \\ 0 & \text{if } e < e^*. \end{cases}$$

$$w^*(e) = \begin{cases} E(\theta) & \text{if } e \geq e^*, \\ \theta_L & \text{if } e < e^*. \end{cases}$$

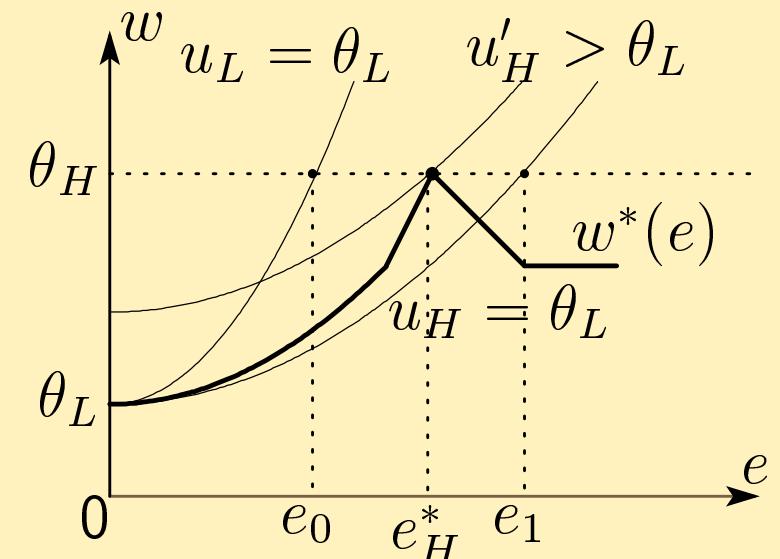


Intuitive criterion

Multiple equilibria and equilibrium refinement

Intuitive criterion (Cho and Kreps (1987)).

Consider a separating PBE in the figure. If type L chooses $e' \in (e_0, e^H)$, he/she will be worse off than choosing $e = 0$, regardless of the belief.



Intuitive criterion

Multiple equilibria and equilibrium refinement

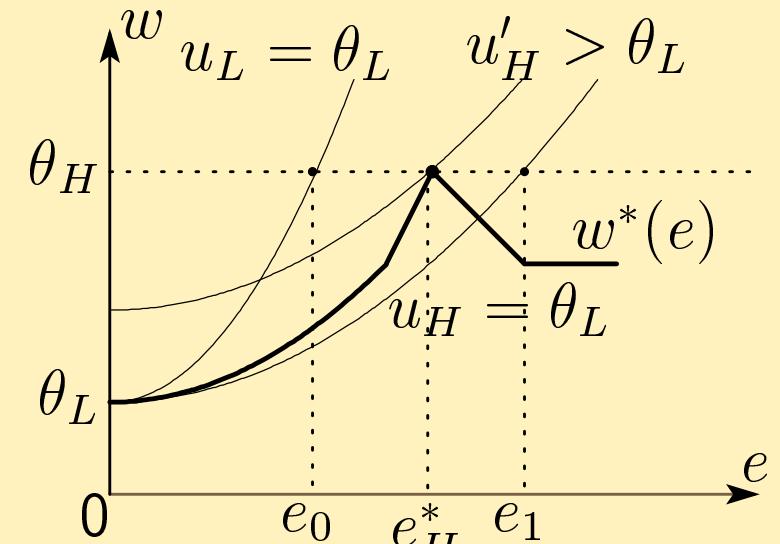
Intuitive criterion (Cho and Kreps (1987)).

Consider a separating PBE in the figure. If type L chooses $e' \in (e_0, e^H)$, he/she will be worse off than choosing $e = 0$, regardless of the belief.

Type L will never choose $e > e_0$.

For $e \in (e_0, e_1)$, $\mu(e) \in [0, 1]$ is not reasonable.

So, $\mu(e) = 1$ for all $e \in (e_0, e_1)$.



Intuitive criterion

Multiple equilibria and equilibrium refinement

Intuitive criterion (Cho and Kreps (1987)).

Consider a separating PBE in the figure. If type L chooses $e' \in (e_0, e^H)$, he/she will be worse off than choosing $e = 0$, regardless of the belief.

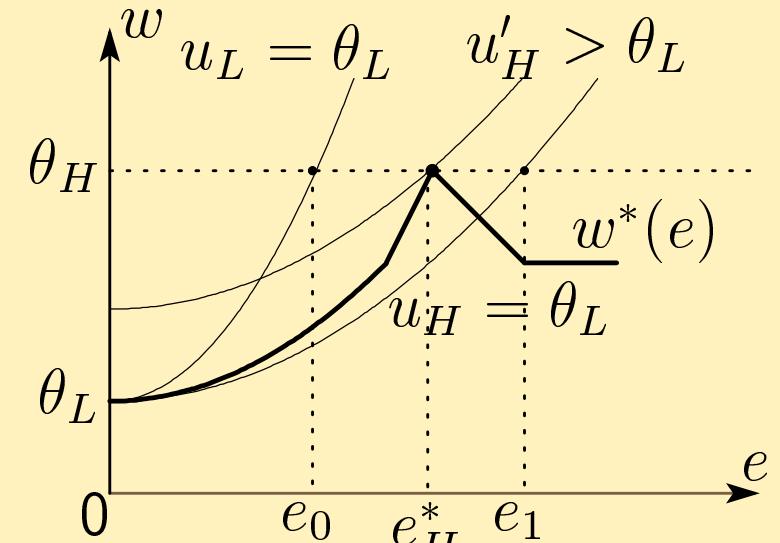
Type L will never choose $e > e_0$.

For $e \in (e_0, e_1)$, $\mu(e) \in [0, 1]$ is not reasonable.

So, $\mu(e) = 1$ for all $e \in (e_0, e_1)$.

Type H will be better off by choosing $e' \in (e_0, e_H^*)$.

Any separating PBE with $e_H^* > e_0$ is not sustained.



Screening

§13.D Screening

Basic assumptions As in Section 13.C,

1. Two types of workers θ_L and θ_H ($\theta_H > \theta_L > 0$), where $\lambda = \Pr(\theta = \theta_H) \in (0, 1)$.
2. The reservation wage of each worker is zero ($r(\theta_H) = r(\theta_L) = 0$).
3. Jobs might differ in the “task level” required of the worker.

To simplify the analysis, assume that higher task levels add **nothing** to the output of the worker.

The output of a type θ is θ regardless of the task.

Screening

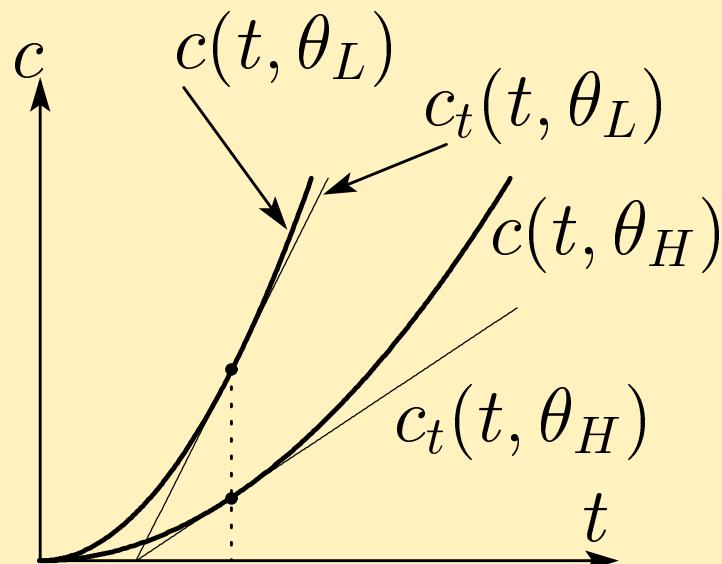
Basic assumptions (cont.)

$$\forall \theta, c(0, \theta) = 0.$$

$$\forall \theta, \forall t, c_t(e, \theta) > 0.$$

$$\forall \theta, \forall t, c_{tt}(e, \theta) > 0.$$

$$\forall t, c(e, \theta_H) < c(e, \theta_L).$$



$\forall t, c_t(e, \theta_H) < c_t(t, \theta_L)$: single-crossing property.

Workers' payoff: $u(w, t | \theta) = w - c(t, \theta)$.

Screening

Timing We consider the following two stage game.

1. Two firms simultaneously announce sets of offered contracts. A contract is a pair (w, t) .
2. Given the offers, each type worker chooses whether to accept a contract and, if so, which one.

Screening

Timing We consider the following two stage game.

1. Two firms simultaneously announce sets of offered contracts. A contract is a pair (w, t) .
2. Given the offers, each type worker chooses whether to accept a contract and, if so, which one.

Proposition 13.D.1 In any SPNE of the screening game with **observable** worker types (complete information case),

Screening

Timing We consider the following two stage game.

1. Two firms simultaneously announce sets of offered contracts. A contract is a pair (w, t) .
2. Given the offers, each type worker chooses whether to accept a contract and, if so, which one.

Proposition 13.D.1 In any SPNE of the screening game with **observable** worker types (complete information case), a type θ_i worker accepts contract $(w_i^*, t_i^*) = (\theta_i, 0)$, and firms earn zero profits.

Intuition: Bertrand competition between the firms.

Screening

Incomplete information Types are *not observable*.

Screening

Incomplete information Types are *not observable*.

Lemma 13.D.1 In any equilibrium, both firms must earn zero profits.

Screening

Incomplete information Types are *not observable*.

Lemma 13.D.1 In any equilibrium, both firms must earn zero profits.

Lemma 13.D.2 No pooling equilibria exist.

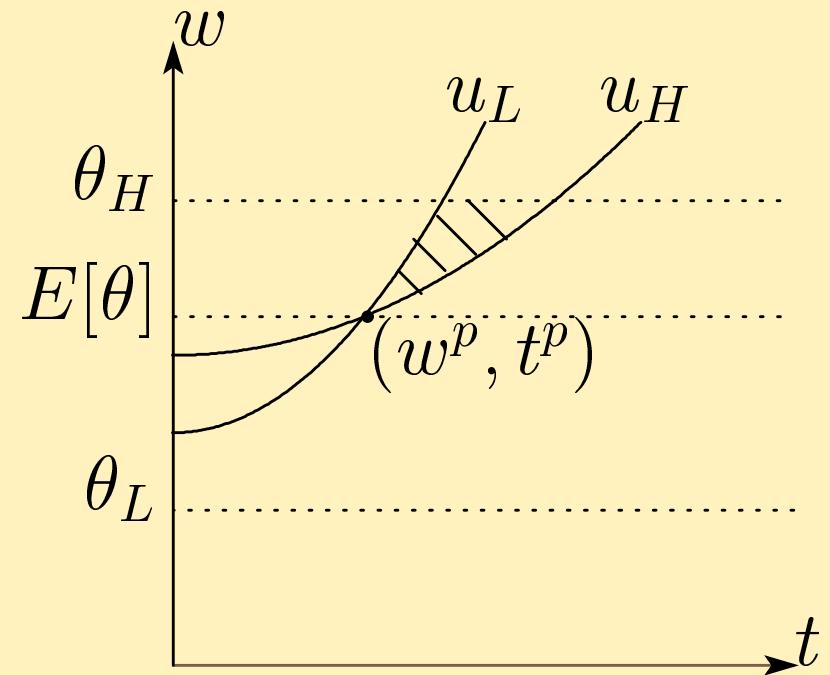
Screening

Incomplete information Types are *not observable*.

Lemma 13.D.1 In any equilibrium, both firms must earn zero profits.

Lemma 13.D.2 No pooling equilibria exist.

Proof By contradiction. (w^p, t^p) is a pooling equilibrium contract. By Lemma 13.D.1, (w^p, t^p) lies on the break-even line (see Figure). Given the contract, a firm earns a positive profit by offering a contract on the shaded area.



Screening

(w_j, t_j) : a contract signed by j workers ($j = H, L$).

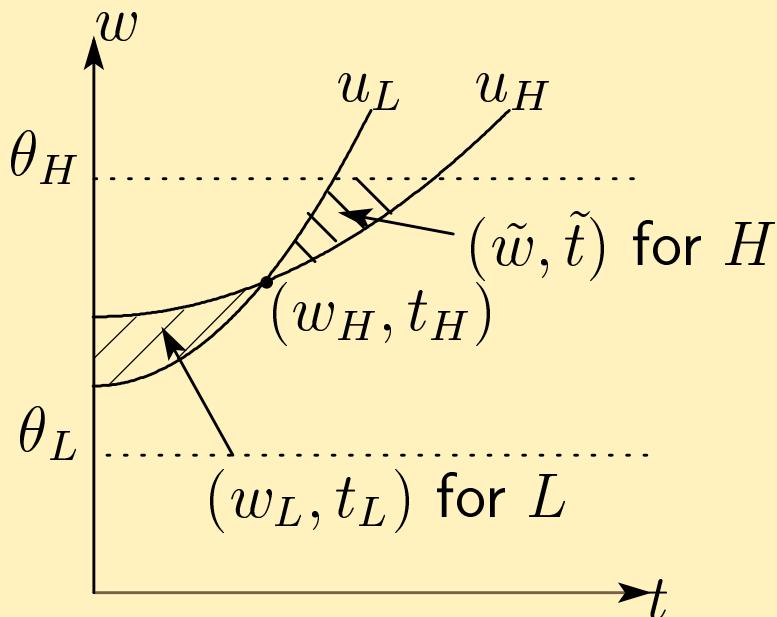
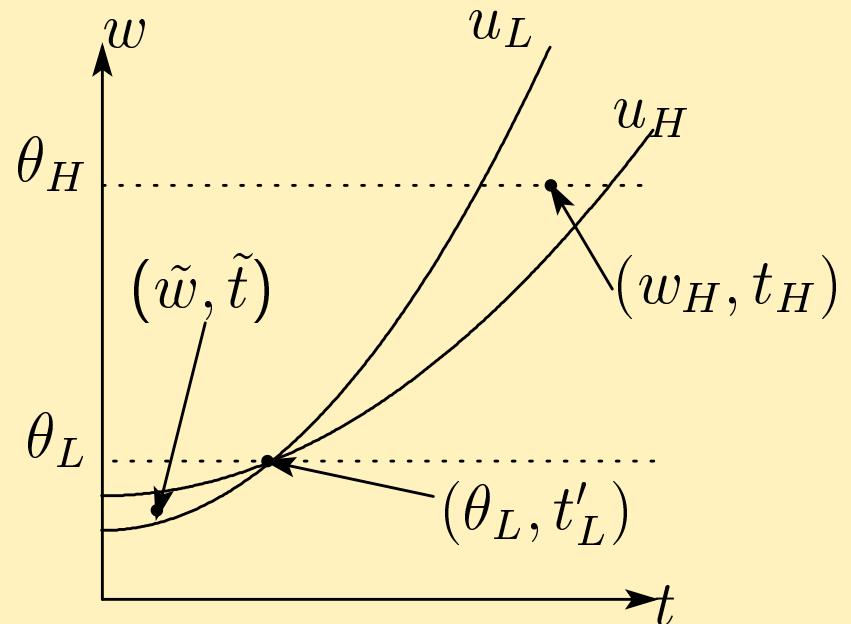
Lemma 13.D.3 In a separating equilibrium, the contracts (w_H, t_H) and (w_L, t_L) yield zero profits. That is, $w_H = \theta_H$ and $w_L = \theta_L$.

Screening

(w_j, t_j) : a contract signed by j workers ($j = H, L$).

Lemma 13.D.3 In a separating equilibrium, the contracts (w_H, t_H) and (w_L, t_L) yield zero profits. That is, $w_H = \theta_H$ and $w_L = \theta_L$.

Lemma 13.D.4 In any separating equilibrium, L workers accept $(\theta_L, 0)$.



Screening

Lemma 13.D.5 In any separating equilibrium, H workers accept (θ_H, \hat{t}_H) such that

$$\theta_H - c(\hat{t}_H, \theta_L) = \theta_L - c(0, \theta_L).$$

Screening

Lemma 13.D.5 In any separating equilibrium, H workers accept (θ_H, \hat{t}_H) such that

$$\theta_H - c(\hat{t}_H, \theta_L) = \theta_L - c(0, \theta_L).$$

Intuition behind the lemma By Lemmas 13.D.3 and 13.D.4, $(w_L, t_L) = (\theta_L, 0)$ and $w_H = \theta_H$.

Screening

Lemma 13.D.5 In any separating equilibrium, H workers accept (θ_H, \hat{t}_H) such that

$$\theta_H - c(\hat{t}_H, \theta_L) = \theta_L - c(0, \theta_L).$$

Intuition behind the lemma By Lemmas 13.D.3 and 13.D.4, $(w_L, t_L) = (\theta_L, 0)$ and $w_H = \theta_H$.

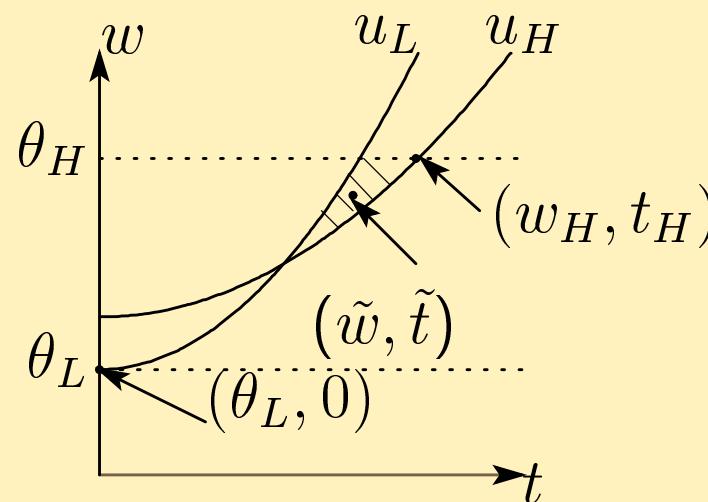
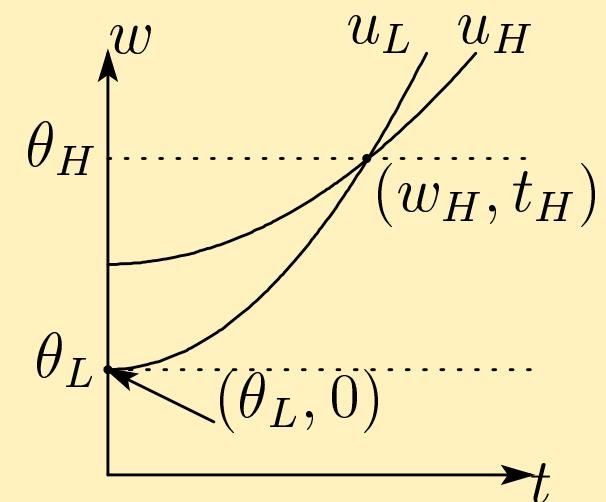
t_H must be at least as large as \hat{t}_H (no mimic).

Screening

Lemma 13.D.5 In any separating equilibrium, H workers accept (θ_H, \hat{t}_H) such that

$$\theta_H - c(\hat{t}_H, \theta_L) = \theta_L - c(0, \theta_L).$$

Intuition behind the lemma By Lemmas 13.D.3 and 13.D.4, $(w_L, t_L) = (\theta_L, 0)$ and $w_H = \theta_H$.
If $t_H > \hat{t}_H$, a firm can offer a more favorable contract for H workers.



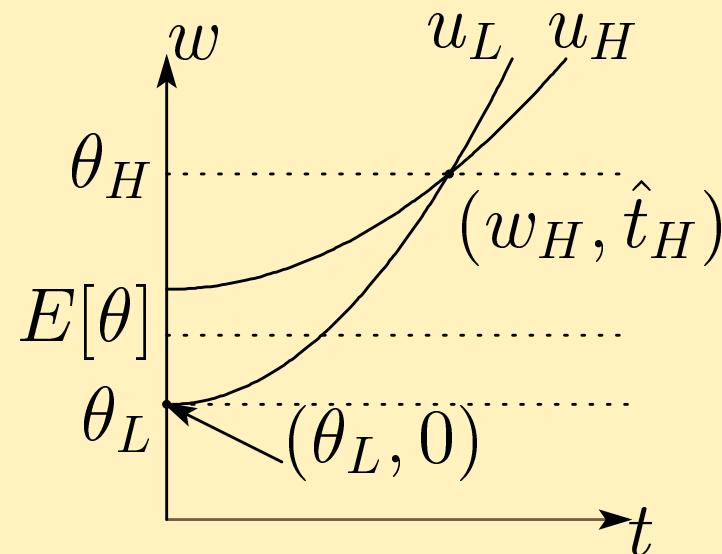
Screening

Proposition 13.D.2 In any SPNE of the screening game, L workers accept $(\theta_L, 0)$, and H workers accept (θ_H, \hat{t}_H) such that $\theta_H - c(\hat{t}_H, \theta_L) = \theta_L - c(0, \theta_L)$.

Screening

Proposition 13.D.2 In any SPNE of the screening game, L workers accept $(\theta_L, 0)$, and H workers accept (θ_H, \hat{t}_H) such that $\theta_H - c(\hat{t}_H, \theta_L) = \theta_L - c(0, \theta_L)$.

Remark This equilibrium is not always sustainable.

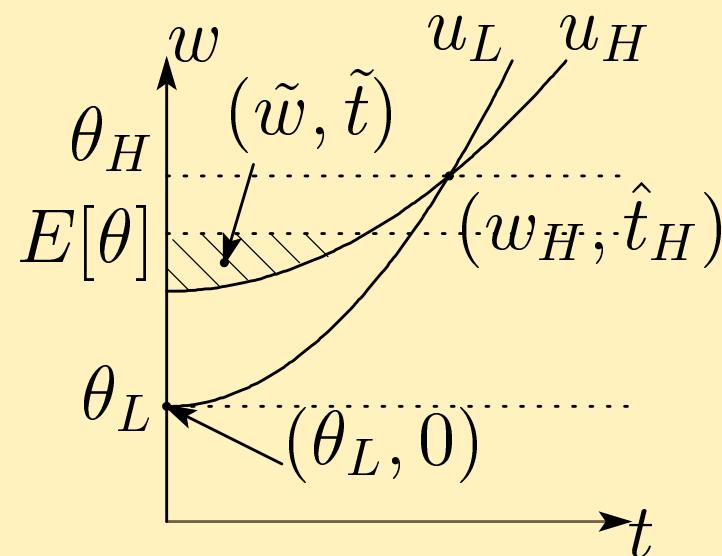


No pooling

Screening

Proposition 13.D.2 In any SPNE of the screening game, L workers accept $(\theta_L, 0)$, and H workers accept (θ_H, \hat{t}_H) such that $\theta_H - c(\hat{t}_H, \theta_L) = \theta_L - c(0, \theta_L)$.

Remark This equilibrium is not always sustainable.

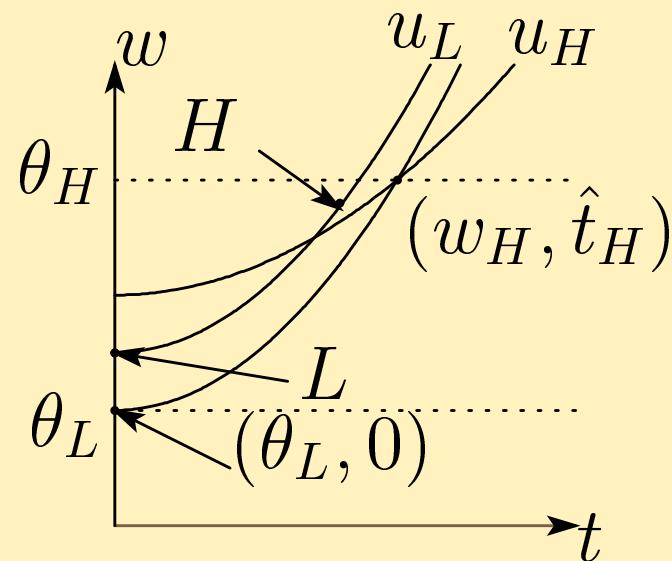


Deviation 1

Screening

Proposition 13.D.2 In any SPNE of the screening game, L workers accept $(\theta_L, 0)$, and H workers accept (θ_H, \hat{t}_H) such that $\theta_H - c(\hat{t}_H, \theta_L) = \theta_L - c(0, \theta_L)$.

Remark This equilibrium is not always sustainable.



Deviation 2

Limit pricing

Limit pricing One incumbent and one potential entrant exist. The incumbent can set a low price in order to avoid or delay entry.

Limit pricing

Limit pricing One incumbent and one potential entrant exist. The incumbent can set a low price in order to avoid or delay entry.

The setting Two-period Cournot comp. with $P(Q) = 1 - Q$.

Limit pricing

The setting Two-period Cournot comp. with

$$P(Q) = 1 - Q.$$

$t = 0$ The cost of firm 1 is realized.

$c = c_H$ with probability μ or

$c = c_L = 0$ with probability $1 - \mu$ ($c_L < c_H < 1/2$).

Limit pricing

The setting Two-period Cournot comp. with

$$P(Q) = 1 - Q.$$

$t = 0$ The cost of firm 1 is realized.

$c = c_H$ with probability μ or

$c = c_L = 0$ with probability $1 - \mu$ ($c_L < c_H < 1/2$).

$t = 1$ Learning its cost, firm 1 sets its quantity $q_1(c)$.

Limit pricing

The setting Two-period Cournot comp. with

$$P(Q) = 1 - Q.$$

$t = 0$ The cost of firm 1 is realized.

$c = c_H$ with probability μ or

$c = c_L = 0$ with probability $1 - \mu$ ($c_L < c_H < 1/2$).

$t = 1$ Learning its cost, firm 1 sets its quantity $q_1(c)$.

$t = 2$ The entrant with cost c_L decides
whether to enter and pay the fixed cost e .

$\varepsilon = 1$ means entry and $\varepsilon = 0$ means no entry.

Limit pricing

The setting Two-period Cournot comp. with

$$P(Q) = 1 - Q.$$

$t = 0$ The cost of firm 1 is realized.

$c = c_H$ with probability μ or

$c = c_L = 0$ with probability $1 - \mu$ ($c_L < c_H < 1/2$).

$t = 1$ Learning its cost, firm 1 sets its quantity $q_1(c)$.

$t = 2$ The entrant with cost c_L decides
whether to enter and pay the fixed cost e .

$\varepsilon = 1$ means entry and $\varepsilon = 0$ means no entry.

The entry strategy is denoted by $\varepsilon(p_1(q_1))$.

After the entry, the entrant learns the incumbent's cost,
and they compete in quantity at period 2.

Limit pricing

The setting $c = c_H$ with prob. μ or $c = c_L = 0$ with prob. $1 - \mu$, $0 = c_L < c_H < 1/2$. The incumbent sets $q_1(c)$. The entry strategy is denoted by $\varepsilon(p_1(q_1))$.

The second stage If no entry occurs, the incumbent sets $q_{2I}(c; \varepsilon = 0) = (1 - c)/2$ (the monopoly quantity when its marginal cost is c).

Limit pricing

The setting $c = c_H$ with prob. μ

The second stage If no entry occurs, the incumbent sets

$$q_{2I}(c; \varepsilon = 0) = (1 - c)/2.$$

If the entry occurs, the firms set

$$q_{2I}(c_H; \varepsilon = 1) = (1 - 2c_H)/3, \quad q_{2E}(c_H; \varepsilon = 1) = (1 + c_H)/3,$$

$$q_{2I}(c_L; \varepsilon = 1) = 1/3, \quad q_{2E}(c_L; \varepsilon = 1) = 1/3.$$

Limit pricing

The setting $c = c_H$ with prob. μ

The second stage If no entry occurs, the incumbent sets

$$q_{2I}(c; \varepsilon = 0) = (1 - c)/2.$$

If the entry occurs, the firms set

$$q_{2I}(c_H; \varepsilon = 1) = (1 - 2c_H)/3, \quad q_{2E}(c_H; \varepsilon = 1) = (1 + c_H)/3,$$

$$q_{2I}(c_L; \varepsilon = 1) = 1/3, \quad q_{2E}(c_L; \varepsilon = 1) = 1/3.$$

Complete information If the entrant knows the true cost of the incumbent before its entry,

$$\pi_E(c_H; 1) = (1 + c_H)^2/9, \quad \pi_E(c_L; 1) = 1/9.$$

We consider the case in which $\pi_E(c_L; 1) < e < \pi_E(c_H; 1)$.

Limit pricing

The setting $\pi_E(c_L; 1) < e < \pi_E(c_H; 1)$.

The second stage If no entry occurs, the incumbent sets $q_{2I}(c; \varepsilon = 0) = (1 - c)/2$.

If the entry occurs, the firms set

$$q_{2I}(c_H; \varepsilon = 1) = (1 - 2c_H)/3, \quad q_{2E}(c_H; \varepsilon = 1) = (1 + c_H)/3,$$
$$q_{2I}(c_L; \varepsilon = 1) = 1/3, \quad q_{2E}(c_L; \varepsilon = 1) = 1/3.$$

Pooling Eq. The entrant uses prior beliefs. Its expected profit is $\mu\pi_E(c_H; 1) + (1 - \mu)\pi_E(c_L; 1)$.

If e is larger than this expected profit, an uninformed entrant does not enter. The expected profit is smaller than $\pi_E(c_H; 1)$.

Limit pricing

The setting $\pi_E(c_L; 1) < e < \pi_E(c_H; 1)$.

Pooling Eq. An uninformed entrant does not enter iff
$$\mu\pi_E(c_H; 1) + (1 - \mu)\pi_E(c_L; 1) < e.$$

Limit pricing

The setting $\pi_E(c_L; 1) < e < \pi_E(c_H; 1)$.

Pooling Eq. An uninformed entrant does not enter iff

$$\mu\pi_E(c_H; 1) + (1 - \mu)\pi_E(c_L; 1) < e.$$

1. The incumbent sets $q_1(c) = 1/2$ which is the single-period monopoly output of $c = c_L$.

Limit pricing

The setting $\pi_E(c_L; 1) < e < \pi_E(c_H; 1)$.

Pooling Eq. An uninformed entrant does not enter iff

$$\mu\pi_E(c_H; 1) + (1 - \mu)\pi_E(c_L; 1) < e.$$

1. The incumbent sets $q_1(c) = 1/2$ which is the single-period monopoly output of $c = c_L$.
2. The entrant's strategy is $\varepsilon(p_1(q_1)) = 1$ if $p_1 > 1/2$ and $\varepsilon(p_1(q_1)) = 0$ if $p_1 \leq 1/2$.

Limit pricing

The setting $\pi_E(c_L; 1) < e < \pi_E(c_H; 1)$.

Pooling Eq. An uninformed entrant does not enter iff

$$\mu\pi_E(c_H; 1) + (1 - \mu)\pi_E(c_L; 1) < e.$$

1. The incumbent sets $q_1(c) = 1/2$ which is the single-period monopoly output of $c = c_L$.
2. The entrant's strategy is $\varepsilon(p_1(q_1)) = 1$ if $p_1 > 1/2$ and $\varepsilon(p_1(q_1)) = 0$ if $p_1 \leq 1/2$. (Belief: $c = c_H$ with probability 1 if $p_1 > 1/2$ and $c = c_L$ with probability μ if $p_1 \leq 1/2$.)

Limit pricing

The setting $\pi_E(c_L; 1) < e < \pi_E(c_H; 1)$.

1. The incumbent sets $q_1(c) = 1/2$ which is the single-period monopoly output of $c = c_L$.
2. The entrant's strategy is $\varepsilon(p_1(q_1)) = 1$ if $p_1 > 1/2$ and $\varepsilon(p_1(q_1)) = 0$ if $p_1 \leq 1/2$. (Belief: $c = c_H$ with probability 1 if $p_1 > 1/2$ and $c = c_H$ with probability μ if $p_1 \leq 1/2$.)

The total profit of the incumbent with $c = c_H$ when it sets $q_1 = 1/2$ is $\pi_I(c_H; 0) \equiv (1 - 2c_H)/4 + (1 - c_H)^2/4$.

Limit pricing

The setting $\pi_E(c_L; 1) < e < \pi_E(c_H; 1)$.

1. The incumbent sets $q_1(c) = 1/2$ which is the single-period monopoly output of $c = c_L$.
2. The entrant's strategy is $\varepsilon(p_1(q_1)) = 1$ if $p_1 > 1/2$ and $\varepsilon(p_1(q_1)) = 0$ if $p_1 \leq 1/2$. (Belief: $c = c_H$ with probability 1 if $p_1 > 1/2$ and $c = c_L$ with probability μ if $p_1 \leq 1/2$.)

The total profit of the incumbent with $c = c_H$ when it sets $q_1 = 1/2$ is $\pi_I(c_H; 0) \equiv (1 - 2c_H)/4 + (1 - c_H)^2/4$.

The total profit of the incumbent with $c = c_H$ when it sets $q_1 = (1 - c_H)/2$ is

$$\pi_I(c_H; 1) \equiv (1 - c_H)^2/4 + (1 - 2c_H)^2/9.$$

Limit pricing

The setting $\pi_E(c_L; 1) < e < \pi_E(c_H; 1)$.

1. The incumbent sets $q_1(c) = 1/2$ which is the single-period monopoly output of $c = c_L$.
2. The entrant's strategy is $\varepsilon(p_1(q_1)) = 1$ if $p_1 > 1/2$ and $\varepsilon(p_1(q_1)) = 0$ if $p_1 \leq 1/2$. (Belief: $c = c_H$ with probability 1 if $p_1 > 1/2$ and $c = c_H$ with probability μ if $p_1 \leq 1/2$.)

The incumbent sets $q_1 = 1/2$ if $\pi_I(c_H; 0) > \pi_I(c_H; 1)$, that is,

$$(1 - 2c_H)/4 + (1 - c_H)^2/4 > (1 - c_H)^2/4 + (1 - 2c_H)^2/9.$$

For any c_H , the incumbent with $c = c_H$ sets $q_1 = 1/2$ that is the monopoly quantity of the incumbent with $c = 0$.