Another relative performance measure

We change the payoff of firm i ($i = 1, 2$) as follows:

$$U_i = \pi_i + \alpha \frac{\pi_i}{\pi_j} (i \neq j),$$

where π_i is the profit of firm i and $\alpha \in (0, a^2/4)$. α indicates the importance of relative performance for firm i's management. Note that, when $\alpha = a^2/4$, the equilibrium price is zero in the competitive situation. We show it later.

First, we discuss joint-payoff maximization. The joint payoff is $\pi_1 + \pi_2 + \alpha (\pi_1/\pi_2 + \pi_2/\pi_1)$ and it is maximized when $y_1 = y_2 = a/2$. The resulting profit of each firm is $a^2/4$ (half of the monopoly profit), and the resulting payoff is:

$$U_1^C = \frac{a^2 + 8\alpha}{8},$$

where the superscript “C” denotes the outcome under the collusion.

Second, we discuss the deviation from the tacit collusion. Given the cooperative output of the rival, firm 2, firm 1 maximizes its payoff U_1. Given $y_2 = a/2$, the first-order condition is as below:

$$\frac{3a^2 + 16\alpha - 8ay_1}{4a} = 0.$$

From this, we obtain

$$y_1^D = \frac{3a^2 + 16\alpha}{8a}.$$
where the superscript "D" denotes the outcome when a firm deviates from the collusion. The resulting payoff is:

\[U_1^D = \frac{(3a^2 + 16\alpha)^2}{8a}. \]

Third, we discuss the competitive situation. Each firm independently chooses its output so as to maximize its own payoff. We have the Cournot-Nash equilibrium as below:

\[y_1^E = y_2^E = \frac{a + \sqrt{a^2 + 12\alpha}}{6}, \]

where the superscript "E" denotes the equilibrium outcome in the competitive phase. The resulting profit and payoff are given by:

\[\pi_1^E = \pi_2^E = \frac{(a + \sqrt{a^2 + 12\alpha})(2a - \sqrt{a^2 + 12\alpha})}{18}, \quad U_1^E = U_2^E = \frac{a^2 + 6\alpha + a\sqrt{a^2 + 12\alpha}}{18}. \]

Given \(y_1^E \) and \(y_2^E \), the equilibrium price is

\[p^E = \frac{2a - \sqrt{a^2 + 12\alpha}}{3}. \]

This is zero when \(\alpha = a^2/4. \)

Results Given the collusive behavior of firm 2, firm 1 can increase its one-shot profit by deviating from the cartel. Its payoff is \(U_1^D \). This deviation induces the competition thereafter. Firm 1’s payoff at the competitive phase is \(U_1^E \). If firm 1 does not deviate from the collusion, its current payoff is \(U_1^C \). If firm 1 has no incentive for deviation now, it will have no incentive in future, as well. Thus, the tacit collusion is sustainable if and only if:

\[\frac{U_1^C}{(1-\delta)} \geq U_1^D + \frac{\delta U_1^E}{1-\delta}. \]

Let \(\delta^* \) be the \(\delta \) satisfying the above equation with equality. The tacit collusion is sustainable if and only if \(\delta \geq \delta^* \). We have

\[\delta^* = \frac{U_1^D - U_1^C}{U_1^D - U_1^E} = \frac{9(a^2 + 16\alpha)^2}{(7a^2 + 48\alpha)^2 - 32a^3\sqrt{a^2 + 12\alpha}}. \]

2
Following the tradition of this field, we measure the stability of collusion in terms of this minimum discount factor δ^*. We have that an increase in α causes greater instability in collusive behavior.

Proposition δ^* is increasing in α.

Proof: The partial derivative of δ^* with respect to α is

$$\frac{\partial \delta^*}{\partial \alpha} = \frac{576a^2(a^2 + 16\alpha)[2(7a^2 + 48\alpha)\sqrt{a^2 + 12\alpha} - a(13a^2 + 144\alpha)]}{\sqrt{a^2 + 12\alpha}((7a^2 + 48\alpha)^2 - 32a^3\sqrt{a^2 + 12\alpha})^2}.$$

If the term between the brackets in the numerator is positive, $\partial \delta^*/\partial \alpha$ is also positive. The following difference has the same sign with this term:

$$[2(7a^2 + 48\alpha)\sqrt{a^2 + 12\alpha}]^2 - [a(13a^2 + 144\alpha)]^2.$$

The difference is $27(a^2 + 16\alpha)^3$. This is positive. $\partial \delta^*/\partial \alpha$ is positive. Q.E.D.

2 Price competition

We consider the case in which the firms compete in price. We set the demand system in this case as follows:

$$q_1 = \begin{cases}
0, & \text{if } a(1 - \gamma) + \gamma p_2 \leq p_1, \\
 a - p_1, & \text{if } p_1 \leq \frac{p_2 - a(1 - \gamma)}{\gamma}, \\
 \frac{a(1 - \gamma) - p_1 + \gamma p_2}{1 - \gamma^2}, & \text{otherwise},
\end{cases}$$

$$q_2 = \begin{cases}
 a - p_2, & \text{if } a(1 - \gamma) + \gamma p_2 \leq p_1, \\
 0, & \text{if } p_1 \leq \frac{p_2 - a(1 - \gamma)}{\gamma}, \\
 \frac{a(1 - \gamma) - p_2 + \gamma p_1}{1 - \gamma^2}, & \text{otherwise}.
\end{cases}$$

where γ is a positive constant ($\gamma \in (0, 1)$). This demand system is related to standard demand functions for differentiated products. The payoff of firm i ($i = 1, 2$) is given by
\(U_i = \pi_i - \alpha \pi_j \) (\(i \neq j \)), where \(\pi_i \) is the profit of firm \(i \) and \(\alpha \in (0, 1) \). \(\alpha \) indicates the importance of relative performance for firm \(i \)’s management.

First, we discuss joint-payoff maximization. The joint payoff is \((1 - \alpha)(\pi_1 + \pi_2)\) and it is maximized when \(p_1 = p_2 = a/2 \). The resulting profit of each firm is \(a^2/4(1 + \gamma) \) (half of the monopoly profit), and the resulting payoff is:

\[
U_1^C = \frac{(1 - \alpha)a^2}{4(1 + \gamma)},
\]

where the superscript “C” denotes the outcome under the collusion.

Second, we discuss the deviation from the tacit collusion. Given the cooperative output of the rival, firm 2, firm 1 maximizes its payoff \(U_1 \). When \(\alpha < (2 - 2\gamma - \gamma^2)/\gamma^2 \), the optimal deviation price is an interior solution. Given \(p_2 = a/2 \), the first-order condition is as below:

\[
\frac{(2 - (1 + \alpha)\gamma)a - 4p_1}{2(1 - \gamma)(1 + \gamma)} = 0.
\]

From this, we obtain

\[
p_D^1 = \frac{(2 - (1 + \alpha)\gamma)a}{4},
\]

where the superscript “D” denotes the outcome when a firm deviates from the collusion. The resulting payoff is:

\[
U_1^D = \frac{(4(1 - \alpha)(1 - \gamma) + (1 + \alpha)^2 \gamma^2)a^2}{16(1 - \gamma)(1 + \gamma)}.
\]

When \(\alpha \geq (2 - 2\gamma - \gamma^2)/\gamma^2 \), the optimal deviation price is a corner solution. This means that the demand for firm 2 is zero when firm 1 deviates from the collusion. Given \(p_2 = a/2 \), the optimal price is

\[
p_1 = \frac{(2\gamma - 1)a}{2\gamma}.
\]

The resulting payoff is:

\[
U_1^D = \frac{(2\gamma - 1)a^2}{4\gamma^2}.
\]
Third, we discuss the competitive situation. Each firm independently chooses its output so as to maximize its own payoff. We have the Bertrand-Nash equilibrium as below:

\[p_1^E = p_2^E = \frac{(1 - \gamma) a}{2 - (1 - \alpha) \gamma}, \]

where the superscript “E” denotes the equilibrium outcome in the competitive phase. The resulting profit and payoff are given by:

\[\pi_1^E = \pi_2^E = \frac{a^2(1 - \gamma)(1 + \alpha \gamma)}{(1 + \gamma)(2 - \gamma + \alpha \gamma)^2}, \quad U_1^E = U_2^E = \frac{a^2(1 - \alpha)(1 - \gamma)(1 + \alpha \gamma)}{(1 + \gamma)(2 - \gamma + \alpha \gamma)^2}. \]

Results Given the collusive behavior of firm 2, firm 1 can increase its one-shot profit by deviating from the cartel. Its payoff is \(U_1^D \). This deviation induces the competition thereafter. Firm 1’s payoff at the competitive phase is \(U_1^E \). If firm 1 does not deviate from the collusion, its current payoff is \(U_1^C \). If firm 1 has no incentive for deviation now, it will have no incentive in future, as well. Thus, the tacit collusion is sustainable if and only if:

\[
\frac{U_1^C}{(1 - \delta)} \geq U_1^D + \frac{\delta U_1^E}{1 - \delta}.
\]

Let \(\delta^* \) be the \(\delta \) satisfying the above equation with equality. The tacit collusion is sustainable if and only if \(\delta \geq \delta^* \). We have

\[
\delta^* = \frac{U_1^D - U_1^C}{U_1^D - U_1^E} = \begin{cases}
\frac{(2 - (1 - \alpha) \gamma)^2}{4(2 - \alpha) - 8(1 - \alpha) \gamma + (1 - \alpha)^2 \gamma^2}, & \text{if } \alpha < (2 - 2\gamma - \gamma^2)/\gamma^2, \\
\frac{(2 - (1 - \alpha) \gamma)^2(\gamma^2 \alpha - 1 + \gamma + \gamma^2)}{-4 + 4(2 - \alpha) \gamma - (1 - 10\alpha + \alpha^2) \gamma^2 + (1 - \alpha) \gamma^3(2(1 + \alpha) \gamma - 3 - 5\alpha)}, & \text{if } \alpha \geq (2 - 2\gamma - \gamma^2)/\gamma^2.
\end{cases}
\]

Following the tradition of this field, we measure the stability of collusion in terms of this minimum discount factor \(\delta^* \). We have that an increase in \(\alpha \) causes greater instability in collusive behavior.
Proposition \(\delta^* \) is increasing in \(\alpha \).

Proof: The partial derivative of \(\delta^* \) with respect to \(\alpha \) is

\[
\frac{\partial \delta^*}{\partial \alpha} = \frac{U^D - U^C}{U^D - U^E}
\]

\[
= \begin{cases}
4(1 - \gamma)(2 - (1 - \alpha)\gamma)(2 + (1 - \alpha)\gamma) & \text{if } \alpha < (2 - 2\gamma - \gamma^2)/\gamma^2, \\
\frac{[4(2 - \alpha) - 8(1 - \alpha)\gamma + (1 - \alpha)^2\gamma^2]^2}{(1 + \alpha)\gamma^4(2 - (1 - \alpha)\gamma)[2 - 5\gamma + 3\gamma^2 + 2\gamma^3 + 2(5\gamma - 3)\alpha + \gamma(-1 + 5\gamma - 2\gamma^2)\alpha^2]} & \text{if } \alpha \geq (2 - 2\gamma - \gamma^2)/\gamma^2.
\end{cases}
\]

In the former case, we easily find that this is positive \((\gamma \in (0, 1) \text{ and } \alpha(0, 1))\). In the latter case, note that \((2 - 2\gamma - \gamma^2)/\gamma^2\) is larger than 1 if \(\gamma \leq 3/5\). This means that the latter case appears only if \(\gamma > 3/5 \text{ because } \alpha \leq 1\). Now consider the term between the brackets in the numerator. We can easily show that \(2 - 5\gamma + 3\gamma^2 + 2\gamma^3\) and the coefficients of \(\alpha\) and \(\alpha^2\) are positive for any \(\gamma > 3/5\). This means that the term between the brackets is positive. Therefore, in the former and the latter cases, the partial derivative of \(\delta^* \) is positive. Q.E.D.