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1 Another relative performance measure
We change the payoff of firm i (i = 1,2) as follows:
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Ui=m+a— (i #j),
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where 7; is the profit of firm i and o € (0,a%/4). « indicates the importance of relative
performance for firm i’s management. Note that, when o = a?/4, the equilibrium price is
zero in the competitive situation. We show it later.

First, we discuss joint-payoff maximization. The joint payoff is m1+ma+a (71 /72 + 72 /71)

and it is maximized when y; = y2 = a/2. The resulting profit of each firm is a?/4 (half of

the monopoly profit), and the resulting payoff is:
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where the superscript “C” denotes the outcome under the collusion.
Second, we discuss the deviation from the tacit collusion. Given the cooperative output
of the rival, firm 2, firm 1 maximizes its payoff U;. Given ya = a/2, the first-order condition

is as below:
3a® + 16 — 8ay

= 0.
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From this, we obtain
P - 3a® + 16«
! 8a '



where the superscript “D” denotes the outcome when a firm deviates from the collusion.

The resulting payoff is:
(3a% + 16a)?

UpP =
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Third, we discuss the competitive situation. Each firm independently chooses its out-

put so as to maximize its own payoff. We have the Cournot-Nash equilibrium as below:
g g atVa+12a
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where the superscript “E” denotes the equilibrium outcome in the competitive phase. The

resulting profit and payoff are given by:

g g (a+Va®+12a)(2a — Va? + 12a)
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Given yf and y&’, the equilibrium price is

This is zero when a = a?/4.

Results Given the collusive behavior of firm 2, firm 1 can increase its one-shot profit
by deviating from the cartel. Its payoff is UP. This deviation induces the competition
thereafter. Firm 1’s payoff at the competitive phase is U{. If firm 1 does not deviate from
the collusion, its current payoff is UC. If firm 1 has no incentive for deviation now, it will

have no incentive in future, as well. Thus, the tacit collusion is sustainable if and only if:
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Let §* be the J satisfying the above equation with equality. The tacit collusion is sustain-

able if and only if § > §*. We have

_uP-uf 9(a? 4 160,)?
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Following the tradition of this field, we measure the stability of collusion in terms of this
minimum discount factor 6*. We have that an increase in « causes greater instability in

collusive behavior.
Proposition §* is increasing in a.
Proof: The partial derivative of §* with respect to « is

d6*  576a*(a® + 160)[2(7a® + 48a)Va? + 12a — a(13a* + 1440)]
da Va2 +12a[(7a? + 48a)? — 32a3v/a? + 12a)? '

If the term between the brackets in the numerator is positive, 96* /O« is also positive. The

following difference has the same sign with this term:

[2(7a” + 48a)V a2 + 12a)% — [a(13a® + 1440)]%.
The difference is 27(a? + 16«)3. This is positive. 95*/da is positive. Q.E.D.
2 Price competition

We consider the case in which the firms compete in price. We set the demand system in

this case as follows:

0, if a(1 —7) +vp2 < p1,
—all —
_ a — pi, if p; < w,
a = vy
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il M=t ’szj otherwise,
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where 7 is a positive constant (y € (0,1)). This demand system is related to standard

demand functions for differentiated products. The payoff of firm i (i = 1,2) is given by



Ui = m —amj (i # j), where 7; is the profit of firm ¢ and a € (0,1). « indicates the
importance of relative performance for firm i’s management.

First, we discuss joint-payoff maximization. The joint payoff is (1 — «)(m; + m2) and
it is maximized when p; = ps = a/2. The resulting profit of each firm is a?/4(1 + ) (half

of the monopoly profit), and the resulting payoff is:

e _ (1-— a)aQ
L 41 +q)
where the superscript “C” denotes the outcome under the collusion.
Second, we discuss the deviation from the tacit collusion. Given the cooperative output

of the rival, firm 2, firm 1 maximizes its payoff U;. When a < (2—2y—+?)/~?, the optimal

deviation price is an interior solution. Given ps = a/2, the first-order condition is as below:

2—- (1 +a)y)a—4p
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From this, we obtain

pp = 2=

where the superscript “D” denotes the outcome when a firm deviates from the collusion.

The resulting payoff is:

(401 —a)(1 =) + 1+ a)*y?)a’
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When a > (2 — 2y —42)/~?, the optimal deviation price is a corner solution. This means
that the demand for firm 2 is zero when firm 1 deviates from the collusion. Given ps = a/2,

the optimal price is
2v—1)a
Dy = (2y —Va
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The resulting payoff is:



Third, we discuss the competitive situation. Each firm independently chooses its out-

put so as to maximize its own payoff. We have the Bertrand-Nash equilibrium as below:

r_5_ (1-7a
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where the superscript “E” denotes the equilibrium outcome in the competitive phase. The

resulting profit and payoff are given by:

p_ p_ 0=+ o p_,p_c(1-0)(1-y)(1+aY)
P A2y tey? T )R-yt an)?

Results Given the collusive behavior of firm 2, firm 1 can increase its one-shot profit
by deviating from the cartel. Its payoff is UlD . This deviation induces the competition
thereafter. Firm 1’s payoff at the competitive phase is U{". If firm 1 does not deviate from
the collusion, its current payoff is UC. If firm 1 has no incentive for deviation now, it will
have no incentive in future, as well. Thus, the tacit collusion is sustainable if and only if:
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Let 0* be the § satisfying the above equation with equality. The tacit collusion is sustain-

able if and only if § > §*. We have

5 upP —-uf
up - Uf
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if @ > (2-2y—9%)/7*

Following the tradition of this field, we measure the stability of collusion in terms of this

if a < (2 -2y —+%)/9%

minimum discount factor 6*. We have that an increase in « causes greater instability in

collusive behavior.



Proposition §* is increasing in a.

Proof. The partial derivative of * with respect to « is

asr UP-Uf
oa — UP-UE
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[44+42—-a)y— (1 —10a + a?)y2 + (1 — )3 (2(1 + o)y — 3 — ba)]? ’

if @ > (2 -2y —~%) /7%

In the former case, we easily find that this is positive (y € (0,1) and «(0,1)). In the latter
case, note that (2 — 2y — +2)/4? is larger than 1 if v < 3/5. This means that the latter
case appears only if v > 3/5 because v < 1. Now consider the term between the brackets
in the numerator. We can easily show that 2 — 5y + 372 4 273 and the coeflicients of o
and a? are positive for any v > 3/5. This means that the term between the brackets
is positive. Therefore, in the former and the latter cases, the partial derivative of §* is

positive. Q.E.D.



